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Abstract 

Most of the progressive failures of geotechnical structures are associated with the strain localization 

phenomenon, which is generally accompanied by strength softening. Many experimental 

observations show that significant rearrangements and rotations of particles occur inside the shear 

bands. The aim of this thesis is to investigate numerically the strain localization phenomena of 

granular materials. Considering the mesh dependency problems in finite element analysis caused by 

strain softening within the classical continuum framework, a sand model based on critical-state has 

been formulated within the framework of the micropolar theory, taking into account the micro 

rotations, and implemented into a finite element code for two dimensional problems. Then, the 

simulations of the shear band in biaxial tests are comprehensively studied in terms of onset, thickness, 

orientation, etc. At the same time, the efficiency of the micropolar approach, as a regularization 

technique, is discussed. This is followed by an instability analysis using the second-order work based 

on the micropolar continuum theory. Finally, for a wider application in simulating failures in 

geotechnical engineering, the 2D model has been extended to 3D model. Based on the entire study, 

both the 2D and 3D model demonstrate obvious regularization ability to relieve the mesh 

dependency problems and to reproduce reasonably the shear bands in geostructures. 

 

Key words: Granular soils, shear band, finite element method, mesh dependency, micropolar theory, 

instability.  

  



IV 

 

Résume  

La plupart des défaillances des structures géotechniques sont associées aux phénomènes de 

localisation des déformations, qui s'accompagnent toujours d'un adoucissement de la résistance. De 

nombreuses observations expérimentales montrent que d’importants réarrangements et rotations de 

particules se produisent à l'intérieur des bandes de cisaillement. Cette thèse vise à étudier 

numériquement les phénomènes de localisation des déformations dans les matériaux granulaires. 

Considérant les problèmes de dépendance au maillage dans l'analyse par éléments finis dans le cadre 

de la modélisation continue classique, un modèle de sable basé sur l'état critique a été formulé dans 

le cadre de la théorie micropolaire. Un code d'élément pour les problèmes bidimensionnels a été 

développé dans ce cadre. Ensuite, les simulations d’essais biaxiaux ont permis d’étudier en 

profondeur les caractéristiques des bande de cisaillement en termes d'apparition, d'épaisseur et 

d'orientation, etc… Dans le même temps, l'efficacité de l'approche micropolaire, en tant que 

technique de régularisation, a été discutée. L'analyse de l'instabilité dans un continuum micropolaire 

basé sur le travail du second ordre a également été effectuée. Enfin, pour une application plus large 

dans la simulation des défaillances en ingénierie géotechnique, le modèle 2D a été étendu à un 

modèle 3D. Sur la base de l'étude, les modèles 2D et 3D ont démontré leurs capacités de 

régularisation pour éviter les problèmes de dépendance au maillage et reproduire raisonnablement la 

bande de cisaillement dans les géostructures. 

 

Mots-clés: Sol granulaire, bande de cisaillement, méthode des éléments finis, dépendance au 

maillage, théorie micropolaire, instabilité.  
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General introduction 

The aim of this thesis is to investigate numerically the strain localization phenomena in geotechnical 

structures with the finite element method. In order to overcome the serious mesh dependency 

problems of the numerical solutions in the post-bifurcation regime and to reproduce reasonably the 

shear band, a sand model based on critical-state has been formulated within the framework of 

micropolar theory and implemented into a finite element code. The micropolar theory was selected as 

the regularization method, because we consider that it has more physical meaning than other 

regularization theories. That is to say, compared to other regularization approaches, the micropolar 

theory is able to take into account the independent rotations of the particles. The thesis is divided into 

five chapters followed by general conclusions and perspectives. The outline is as follows: 

Chapter 1 presents a comprehensive review of the strain localization phenomena in natural or 

artificial geo-structures and laboratory tests. The, with the aim of explaining the strain localization 

phenomena, various research methods and theories including the finite element method were 

summarized. Considering the mesh dependency problems in models based on the classical 

continuum theory, several regularization theories, e.g. non-local theory, high-gradient theory, 

micropolar theory, were discussed. According to their advantages or disadvantages, the micropolar 

theory was selected and used at last. 

In chapter 2, a detailed introduction of the micropolar theory is presented, followed by a brief 

description of a sand model based on critical-state. Then, the full formulations of the model within 

the framework of micropolar theory have been derived. Based on the polarized model, FE 

implementations and validations have been conducted by fitting a series of laboratory element tests. 

The capability of micropolar approach in dealing with mesh dependency problems has also been 

presented by simulating a biaxial test and a retaining wall. 

In chapter 3, the shear band in biaxial tests is numerically investigated in terms of onset, 

thickness and orientation, etc. For the purposes of validation, shear band thickness was also 

compared with the experimental outcomes. Furthermore, an effective regularization ratio in the 

micropolar model was proposed and discussed. At last, the influences of all the conditions, such as 
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confining pressures, initial void ratios, internal length, model parameters, on shear band patterns and 

the effective ratio have been discussed. 

In chapter 4, the strain localization problems were discussed from an energy point of view. 

Because the driving force behind failures is believed to be the instability, the second-order work 

proposed by Hill (1958) was newly defined according to the micropolar model and used herein to 

investigate the difference between the classical model and the micropolar model. The 

mesh-independency using the micropolar model was also revealed by comparing second-order work 

for different cases. 

In chapter 5, with an intent for more wide application in simulating the failures in geotechnical 

engineering, the 2D micropolar model has been extended to a 3D one. The implementation and 

numerical simulations were performed in detail. Furthermore, both the 2D and 3D model have 

demonstrated powerful regularization ability to relieve the mesh dependency problems and 

reasonably reproduce the shear band in structures. 

Finally the general conclusions and perspectives summarized the thesis and proposed some 

perspectives and open questions for future developments. 

Besides of these, some mathematical derivations of the mesh dependency problems and the 

pathological solutions can be found in the Appendices. The parameters used in current manuscript by 

fitting an isotropic compression test and a series of triaxial tests were also calibrated and summarized 

in the Appendices. 
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Introduction générale 

Cette thèse vise à étudier numériquement les phénomènes de localisation des déformations en 

géotechnique par la méthode des éléments finis. Afin de traiter les sérieux problèmes de dépendance 

au maillage des solutions numériques dans le régime post-bifurcation et de reproduire 

raisonnablement le développement des bande de cisaillement, un modèle de sable basé sur l'état 

critique a été formulé dans le cadre de la théorie micropolaire et implémenté dans un code aux 

éléments finis. Le choix de cette méthode de régularisation s’appuie sur le fait qu’elle a un sens 

physique plus parqué que d’autres approches de régularisation. C'est-à-dire, par rapport à d'autres 

approches de régularisation, la théorie micropolaire est capable de prendre en compte les rotations 

indépendantes des particules. La thèse est divisée en cinq chapitres suivis des conclusions générales 

et des perspectives et est structurée comme suit. 

Dans le chapitre 1, une synthèse détaillée des phénomènes de localisation des déformations au 

sein de géo-structures naturelles ou artificielles et d'échantillons de laboratoire a été réalisée. Puis, 

dans le but d'expliquer les phénomènes de localisation des déformations, une série de méthodes de 

recherche et de théories incluant la méthode des éléments finis a été résumée. Etant donnés les 

problèmes de dépendance au maillage dans les modèles basés sur la théorie du continuum classique, 

plusieurs approches de régularisation, telles que la théorie non locale, la théorie du gradient élevé, la 

théorie micropolaire, ont été présentées. Sur la base des discussions sur les avantages et les 

inconvénients de ces différentes théories, l'approche micropolaire a finalement été sélectionnée. 

Au chapitre 2, la théorie micropolaire a été illustrée en détail. Un modèle élastoplastic pour les 

sables, basé sur l'état critique a été retenu et les formulations complètes du modèle dans le cadre de la 

théorie micropolaire ont été dérivées. Ce modèle polarisé a été implémenté dans un code de calcul 

aux éléments finis et des validations ont été réalisées en s'appuyant sur une série d'essais élémentaire 

de laboratoire. La capacité de l'approche micropolaire dans le traitement des problèmes de 

dépendance au maillage a également été présentée. 

Dans le chapitre 3, la bande de cisaillement dans les essais biaxiaux ont été numériquement 

étudiée en termes d'amorcé de la localisation, d'épaisseur et d'orientation des bandes, etc... A des fins 

de validation, l'épaisseur de la bande de cisaillement a également été comparée à celles obtenues 
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dans les expériences. De plus, un ratio de régularisation efficace dans le modèle micropolaire a été 

proposé et discuté. Enfin, les influences de différentes conditions d'essai, telles que la pression de 

confinement et l'indice des vides initial, sur les caracteristiques des bandes de cisaillement obtenues 

numériquement et sur la valeur du rapport de régularisation ont été discutées. De même l'influence 

de la longueur interne et celle des paramètres du modèle ont été examinées. 

Au chapitre 4, les problèmes de localisation des déformations ont été discutés d'un point de vue 

énergétique. Parce que l'instabilité matérielle est considéré comme étant le moteur des défaillances 

structurales, le travail du second ordre proposé par Hill (1958) a été redéfini dans le cadre du modèle 

micropolaire et utilisé ici pour analyser et comprendre les différences entre le modèle classique et le 

modèle micropolaire. L'indépendance du maillage à l'aide du modèle micropolaire a également été en 

évidence en étudiant le travail du second ordre pour différents cas de chargement. 

Dans le chapitre 5, avec comme objectif une application plus large dans la simulation des 

défaillances en ingénierie géotechnique, le modèle micropolaire 2D a été étendu à un modèle 3D. La 

mise en œuvre et les simulations numériques ont été présentées en détail pour illustrer les capacités 

de cette modélisation. Comme le modèle 2D et le modèle 3D a démontré une capacité de 

régularisation puissante pour soulager les problèmes de dépendance au maillage et reproduire 

raisonnablement les bandes de cisaillement dans les structures géotechnique. 

Le mémoire se terminé par des conclusions générales reprenant les avancées scientifiques 

principales obtenues au cours de ce travail de ce thèse et des perspectives et questions ouvertes pour 

des développements futurs. 

Certaines dérivations mathématiques des problèmes de dépendance au maillage et des solutions 

pathologiques sont présentées en annexe. L'étalonnage des paramètres du modèle de comportement 

utilisés dans le manuscrit sur la base d'une série d'essais triaxiaux est également présenté en annexe. 
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Chapter 1 Literature Survey 

1.1 Introduction 

Natural and artificial geotechnical structures play an essential role in our lives. Granular soils, 

whether as the main construction materials or the foundation of geotechnical structures, determine, to 

an extent, their failure mechanisms. Many disasters that affect our lives are linked to geotechnical 

failures, such as landslides, slope instability of high embankments or dams, collapse of excavated 

tunnel surfaces, and uneven settlement of buildings and roads. Most geotechnical hazards can be 

identified as examples of progressive failure caused by the occurrence and development of severe 

strain localization. Accordingly, this phenomenon, as it pertains to geotechnical engineering, has long 

been an important and extensively researched topic.  

Although strain localization has long been observed at the scales of both geotechnical structures 

and laboratory experiments, systematic studies designed to observe and analyze shear banding in 

geomaterials have been undertaken only during the past decades (Desrues and Viggiani, 2004). 

Based on the monitoring or observation of strain localization phenomena, the mechanism 

underpinning strain localization has become clearer. Although a macroscopic occurrence, its origin 

lies in the material microstructure. A variety of theories and methods have been proposed with the 

aim of describing and explaining these phenomena against the backdrop of geotechnical engineering, 

for example, equilibrium theories, discontinuity theories, bifurcation theories, and different 

constitutive models. Occasionally, these models have been enhanced using a range of regularization 

approaches, which have chiefly been adopted for post-failure analysis. With the help of a suitable 

theory and constitutive model, the typical strain localization with shear band can be reproduced via 

numerical simulations. The shear banding invariably refers to failure surface inclination, shear 

banding thickness, and the global bearing capacity of structures during the overall failure process.  

In this chapter, a detailed synthesis of strain localization phenomena from natural or artificial 

geo-structures to laboratory tests was first summarized. Then, the mechanism of strain softening of 

granular material or structures was discussed. As an intent of explaining the strain localization 

phenomena, a series of research methods and theories was reviewed. Shear band, the main specific 
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feature of strain localization phenomena, was focused on in terms of its onset, inclination, thickness, 

etc. Next, the advantages and disadvantages of numerical methods were discussed. Considering the 

deficiencies of FEM in modelling strain localization problem, several main regularization approaches, 

such as viscosity theory, non-local theory, high-gradient theory and micropolar theory, are naturally 

introduced. According to the properties of each regularization technique, the micropolar theory was 

favored in the present manuscript at last. Therefore, the applications of micropolar theory in 

geotechnical engineering and its internal length scale parameters have been comprehensively 

summarized and discussed. 

1.2 Strain localization phenomena 

1.2.1 Engineering scale: collapse of geotechnical structures 

The collapse of natural or artificial geotechnical structures, when attributable to their excessive shear 

strain localization, has a number of possible factors. It has been found that accumulation of plastic 

strain resulted in the instability of structures.  

 

Figure 1-1 Uneven settlement and the collapse of buildings: (a) Tower of Pisa; (b) residential buildings in Shanghai 

Interestingly, we start this section by the picture of Leaning Tower of Pisa in Italy in Figure 1-1 

(a) and its comparison in Figure 1-1 (b). The Leaning Tower of Pisa, relating to the uneven 
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deformation of foundation, is a very famous example in geotechnics. The collapse of a 13-story 

residential building under construction in Shanghai, China, in 2009 is also an example of excessive 

leaning, while it is a disaster. The Leaning Tower’s uneven settlement is attributable to the 

self-heterogeneous nature of the materials in the foundation. For the 13-story building, by contrast, 

temporary excavation (unloading) adjacent to the structure on one side, together with temporary 

spoils piles (loading) on the other, caused slightly uneven settlement of the building that then 

induced an excess of external unbalanced forces sufficient to shear the pile foundations, causing 

global slope stability failure and ultimately collapse. We can imagine that if the uneven displacement 

of a building constructed on a soil foundation were not monitored and controlled as soon as possible, 

it would no doubt transition from a state similar to that of the famous Leaning Tower to a final 

collapsed condition, just as this obscure residential building did. The building’s state would change 

from the onset of inhomogeneous deformation to, ultimately, total collapse, a process that could be 

identified as progressive failure caused by the development of shear strain localization.  

 

Figure 1-2 Collapse of typical geotechnical structures: (a) landslide in San Salvador; (b) slide of a high embankment; 

(c) collapse of the excavation surface; (d) failure of a retaining wall 
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Besides the uneven settlement of buildings, certain other geotechnical failures can also be 

identified as instances of such failure, such as landslides, erosion of high embankments or dams, the 

collapse of the excavated surface of a tunnel, and the failure of a retaining wall. Figure 1-2 illustrates 

such eventualities: (a) a landslide on a mountain slope after a 2001 earthquake in San Salvador 

(http://kids.britannica.com/kids/article/landslide/433121); (b) the break-up of a high embankment; (c) 

the collapse of a tunnel under construction in Inner Mongolia, China, 2010 (http:// 

www.chinadaily.com.cn/china/2010-03/20/content_9616414.htm); (d) the slide of backfilled soils 

behind a retaining wall in the U.S. city of San Antonio (http://www.retainingwallexpert.com/artman2 

/publish/Wall_Failures/Retaining_Wall_Failure_-_San_Antonio_TX.shtml). The term landslide is 

used to refer to a wide variety of processes that result in the downward and outward movement of 

slope-forming materials, including rock, soil, or artificial fill or a combination of all of these. The 

failures of all these structures, then, can be explained by defining them as landslides. The key factor 

that causes a landslip to occur is instability of the slope, whether steep or shallow. Many geological 

factors (such as type of rock, grain size, and steepness of slope) influence a particular location’s 

susceptibility to landslide. When the gravitational force reaches a certain threshold (which varies 

according to location, rock type, and so on), the slope fails and a landslide occurs. Whether this 

outcome is sudden or slow, it always undergoes the same progressive process. Although many 

possible causes may be acting independently or in tandem to cause a landslide, certain key events are 

likely to trigger them: volcanic or earthquake activity, heavy rain, isostatic rebound (melting of 

glacial ice, which causes land to rise), and human activity such as mining or construction. 

 

Figure 1-3 Major types of failure of slope: (a) rotational landslide; (b) translational landslide; (c) block slide 
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Although instability can cause a structure to fail in many ways, this section will be restricted to 

the phenomenon of the collapse of several typical geotechnical structures at an engineering scale. 

Other mechanisms will be discussed and studied in subsequent sections. According to the 

classification of the U.S. Geological Survey, the two most common types of slide are rotational and 

translational landslides, as shown in Figure 1-3. In fact, what links different geological failures is the 

common phenomenon of severe rotational and translational deformation of materials in the 

strain-localized region. The failures of structures are closely related to the grain conditions inside the 

strain localized regions. That is to say the rotations and rearrangements of grains located in the local 

failure regions affect greatly the global mechanical response, which will be discussed in detail in the 

following chapters. 

1.2.2 Model scale: strain localization in model tests 

Work on model walls began in 1954 with Roscoe, as reported by Schofield (1968). Those who have 

continued his work have conducted, and recorded on radiographs, many model wall tests (active or 

passive) (Arthur, 1962; James, 1965; Lucia, 1966; May, 1967; Adeosun, 1968; Bransby, 1968; Lord, 

1969; Smith, 1972; Milligan, 1974). These follow-ups were performed at Cambridge University 

between 1962 and 1974. The researchers’ main purpose was to obtain high-quality strain 

measurements inside the sand mass using the X-ray method, but not to study the shear band 

(Leśniewska, 2000). Their work provided subsequent researchers with abundant data concerning 

numerous shear bands, contributing significantly to the study of strain localization.  

Later on, increasing numbers of researchers conducted model test series to investigate the 

failures of geotechnical structures. Considering the stress-dependent behavior of soil, centrifuge has 

proven to be a highly suitable and powerful technique for investigating several types of practical 

problems in geotechnics. Many measuring and test techniques in experimental geotechnics have been 

developed and applied by Allersma and his team, who designed and built a small geo-centrifuge at 

the geotechnical laboratory (Allersma, 1994b, a, 2002). Furthermore, several projects have been 

modeled correctly in the centrifuge, such as those simulating the instability of dykes and 

embankments, land subsidence, the instability of street pile walls, the collapse of steep cuttings, and 

so on. 
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In Figure 1-4, (a) is the centrifuge developed by TU Delft, while (b), (c), and (d) represent the 

modeling of the instability of a dyke and the uneven settlement and collapse of a street pile wall 

(http://hgballersma.net/tudweb). From the model tests undertaken by TU Delft, strain localization 

phenomena can easily be observed.  

 

Figure 1-4 Centrifuge and typical centrifuge modellings. (a) Centrifuge machine (b) Dike model (c) Uneven 

settlement (d) Street pile wall 

As well as centrifuge modeling, other model tests have also been performed by many 

researchers, such as the tank model conducted as part of the British Geological Survey. Figure 1-5 

shows the reconstruction of a typical geo-hazard, retaining wall failure, using a tank model in 2013 

(https://www.youtube.com/watch?v=MS4H_u0ARpo). A retaining wall is intended to safeguard the 

buildings constructed above the soil behind it. This can be observed where roads, railways, or other 

excavations have been built that cut into the land. The failure of such a wall can be used to explain 

the familiar hazard process in ground engineering. Figure 1-5 demonstrates the entire progressive 

failure process of a retaining wall. With the rotation of the wall around its toe, the first main shear 
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band appears before the right-side region of the shear band begins to slide downward and outward; 

then, the retaining wall moves to a certain extent and secondary shear bands form in the previous 

sliding region. This is followed by the collapse of the soils behind the wall as well as the 

construction above it. 

 

Figure 1-5 Progressive failure of retaining wall by geo-hazard tank model: (a) initial state; (b) formation of first 

shear band; (c) formation of several shear band; (d) collapse of soil 

Recently, Lluís (2017) demonstrated for educational purposes the progressive failure process of 

soil under rigid footing. From his video recording, we can also observe the entire formation process 

of the strain localization phenomenon. Initially, only the soils immediately beneath the footing begin 

to sink. With the footing’s increasing penetration into the soils, those beneath the footing form a 

triangular shape because of the frictional constraint between the rough base of the footing and the 

soil. At the same time, the soil around the triangular area is subjected to pressure and slide outward 

along an inclined surface. Finally, the soil at both sides of the footing is significantly uplifted 

laterally, leading to the occurrence of instability. The shapes of the failure (shear band) under 

ultimate loading conditions are displayed in image (d). The failure is accompanied by the appearance 

of failure shear bands and considerable bulging of a sheared mass of sand. This type of failure was 

designated as general shear failure by Terzaghi (1943). However, the surfaces are in theory sliding 
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surfaces rather than, as in reality, sliding shear bands of finite thickness. It should be noted that two 

other failure types can occur: local shear failure and punching shear failure. 

 

Figure 1-6 Soil failure under footing by geo-hazard tank model: (a) initial state; (b) formation of the triangle area 

under footing; (c) laterally uplift outward; (d) formation of slide surface 

1.2.3 Laboratory sample scale: strain localization in specimens  

In the laboratory, strain localization is usually reproduced using shear bands formed in specimens 

during loading. This is done in the direct shear test, simple shear test, hollow cylinder, triaxial test, 

and biaxial test, for example. It is a narrow zone of intense shearing strain, usually plastic in nature, 

which develops during severe deformation of ductile materials. Sample tests of shear bands have 

been conducted by many researchers, e.g. Vardoulakis (1980), Desrues (1990), Han and Drescher 

(1993), and Alshibli et al. (2002). Strain localization phenomena can be clearly observed in their 

studies. As examples, soil specimens (overconsolidated clay and dense sand) of triaxial and biaxial 

tests are shown in Figure 1-7; the pictures on the left are of triaxial and biaxial apparatuses operated 
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by Tang (2007) and Alshibli (1996), respectively. The next two pictures represent the deformed 

specimens in various states. In these tests, the specimens are usually compressed and then sheared by 

increasing the axial strain. For the triaxial test, after an axial–symmetric compression test, the sample 

was initially cylindrical in shape; because the researchers attempted to preserve symmetry during the 

test, the cylindrical shape was maintained for a short time and the deformation was homogeneous. 

But at extreme loading, two crossed shear bands formed and the subsequent deformation was 

strongly localized. For the biaxial test, conducted on dense Ottawa sand, we can also observe that the 

uniform deformation of the specimen was broken at an early stage by the first inclined shear band 

after only a small axial deformation. With the increasing axial strain, the second shear band appeared 

and formed two clear crossed (X-shaped) shear bands. In general, it is easy to discern that shear 

bands are narrow zones of finite thickness and a certain orientation, which have been studied by 

many researchers via experimental and numerical means. In addition, strain localization should be 

held responsible for a reduction in global bearing strength. This section is limited to a discussion of 

the strain localization phenomenon. Shear bands will be investigated in detail in subsequent parts. 

Researchers have also found that shear bands inside dense or overconsolidated specimens in 

triaxial tests are highly complex. In contrast, the bands formed easily, early, and clearly in biaxial 

tests. As well as the macro-observation of the strain localization phenomenon in the laboratory, 

micro-observations have also been performed by many groups. Recently, with the latest discrete 

grain scale Volumetric Digital Image Correlation (V-DIC) method developed by 3S-R in Grenoble, 

the translations and substantial rotations of grains in shear strain–localized regions have been 

confirmed by Viggiani et al. (2010). 
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Figure 1-7 Apparatus and specimens: (a) triaxial test; (b) biaxial test 

1.3 Mechanisms of strain localization 

At the macroscopic level of observation, a shear band may be described as a zone of intense 

deformation bounded by two discontinuity planes with a finite thickness. This phenomenon may be 

caused by geometrical effects (shape and boundary conditions of the body can augment the 

bifurcation conditions of the interior (Dietsche and Willam, 1997) or by material effects 

(heterogeneity and local defects). Taking the sample test as an example, the mechanism of strain 

localization can be discussed in terms of its onset, development, and causes. Shear bands—the 

typical sign of strain localization—are usually found in the specimens in triaxial or biaxial tests on 
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overconsolidated soil or dense sand. In these tests, the specimen is usually compressed first, before 

being sheared to the point of failure. During the shearing stage, initially the strength increases and 

the total volume decreases with the growing axial strain, which corresponds to Stage 1 as shown in 

Figure 1-8. After a short period of homogeneous deformation, the specimen begins to dilate, 

accompanied by the appearance of the shear band. The dilatancy of granular materials in 

strain-localized regions results in an increase of global volume. At the same time, the bearing 

strength reaches an apex just after the onset of the shear band, then reduces gradually. This process is 

illustrated in Stage 2 in Figure 1-8. With the further increase of axial strain, the increased volume, 

caused by dilatancy, and the decreased load capacity, mainly caused by failure, stop changing and 

tend to a terminal steady state, respectively, which corresponds to Stage 3 in Figure 1-8.  

Although many factors, such as grain size, grain shape, grain surface roughness, confining 

pressure, boundary condition, initial imperfections, initial density, and so on, have been proven to 

affect the formation of the shear band (Alsaleh, 2004), the forms (thickness and orientation) of said 

band and the trend of the mechanical response are generally similar. Accordingly, the influences of 

these different factors will not be discussed in this section. 

 

Figure 1-8 Stress and strain of the specimen in triaxial or biaxial test 

As most granular materials share the same strain-softening behavior, we can be in no doubt that 

the softening behavior of soil or sand can result in the global softening phenomenon for a specimen, 

greatly influencing shear band formation. However, it is worth noting that the softening behavior is 
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not a necessary factor as regards the onset and development of shear bands (de Borst et al., 1993). 

From a physical point of view, we can explain the strain localization phenomenon, which is 

accompanied by a reduction of bearing strength, as follows: “Because a specimen composed of 

granular particles always has intrinsic heterogeneity and different boundary restraints on its borders, 

the stress distribution will be non-uniform and the strain distribution will also not be homogeneous. 

When the sample is loaded, some local regions will be first to reach their strength limit and start to 

rupture; and thus the local strength reduces with further deformation and is not sufficient to resist the 

previous loadings. At the same time, local imperfection results in a reduction of the global bearing 

capacity. Then, to keep the force balanced, the additional burden will be transferred and shared by 

the neighboring soil regions. This will continue until the internal resistance can balance the external 

load. If the latter does not happen, the strain-localized regions will continually spread and develop in 

a certain direction until the formation of complete shear bands, which will divide the sample into a 

certain number of independent parts before the final collapse of the structure. During this process, 

failure occurs in certain regions and spreads to their surroundings, which is also a progressive 

balancing process. With the reduction of global bearing capacity, the parts outside the 

strain-localized regions unload for the sake of equilibrium.”  

The strain-localized and other regions have very different deformation gradients. Accordingly, 

we may conclude that the failure of a sample or structure is a progressive process, in the course of 

which the strain localization phenomenon is often accompanied by a significant reduction of the load 

bearing capacity. Vardoulakis (1998) also explained the softening phenomenon from a micro point of 

view; in his opinion, reduction of coordination number and grain column buckling produce 

macroscopic softening of materials inside the localized zone. For equilibrium reasons, the material 

outside the localized zone is unloaded. He also pointed out that the modeling of localized 

deformation in geomaterials is quite a challenging task, because of the mathematical difficulties that 

are generally encountered while dealing with the behavior of non-associated and softening materials. 

Finally, to accurately predict the development of failure and prevent geotechnical hazards, the study 

of this progressive kinematic process is of great importance and significance in the real world. 
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1.4 Theories and methods of describing strain localization 

1.4.1 Experimental investigations 

1.4.1.1 Techniques for observing the shear band 

As is widely known, investigations into the shear localization phenomenon have been fruitful, thanks 

to the unrelenting efforts of those who have done before. The most valuable experimental 

contributions to the understanding of shear banding have been those that have measured, in one way 

or another, the full extent of deformation in a specimen, which is the only means by which test 

results can be adequately interpreted (Viggiani et al., 2010) . 

Full-field analysis of the strain localization phenomenon in sand began in the 1960s in 

Cambridge, which was followed by the work of several groups, including 3S-R in Grenoble (Desrues, 

1984, 1990; Bésuelle and Rudnicki, 2004; Viggiani et al., 2004; Desrues et al., 2010; Viggiani et al., 

2010). In the 1960s X-ray radiography was first used to measure 2D strain fields in sand, and from 

the early 1980s X-ray tomography was used by a few groups working in geomechanics. Thereafter, 

the advent of X-ray micro-tomography, as used by Oda and his colleagues (Oda et al., 1982; Oda et 

al., 1997; Oda &Kazama, 1998) , allowed researchers to study the mechanics of granular media (in 

3D) at the grain level, which would not have been possible with the previous standard X-ray 

tomography images. However, the images taken by Oda were obtained after the fact, and the 

evolution of the entire deformation process was ignored. Because of the deficiencies of X-ray 

micro-tomography, in-situ X-ray tomography was proposed, which could scan and record throughout 

the entire loading process. Now, highly accurate strain-filed evolution measurement techniques have 

been developed and used widely, including false relief stereo photogrammetry (FRS) and computed 

tomography (CT) as proposed by 3S-R in Grenoble, France (Desrues et al., 2007) , and the digital 

image processing technique developed by Shao (2006). These new techniques enable full tracking of 

strain localization from onset to complete formation of shear band. In recent work, the researchers in 

3S-R have also applied the 3D Volumetric Digital Image Correlation (V-DIC) method to a sequence 

of X-ray tomography images taken during their tests. Furthermore, they proposed a grain-scale 
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V-DIC that permits the characterization of the full kinematics (i.e., 3D displacements and rotations) 

of all the individual grains in a specimen. 

In terms of the study of strain localization, the focus has mainly been on the onset and 

propagation of the shear band, its thickness and orientation, and the influences of key factors, such as 

mean grain size, confining pressure, initial density, and so on, on its formation.  

1.4.1.2 Onset of shear band 

For many years, the received wisdom on the onset of shear bands was that they occurred and 

developed only in dense sand and overconsolidated soils. This was because we cannot always 

discern bands in loose specimens with the naked eye. Years later, Leśniewska (2000) gave two 

explanations for the invisible shear bands of loose sand: “First, tests performed on loose samples 

were often terminated before the peak friction angle had been attained. This occurred because such 

samples were investigated in the same range of deformation as their dense counterparts (usually 

about 5% of axial strain), whereas they required higher strains to achieve the peak friction angle. If 

the tests had been taken further, it is likely that shear bands would have been observed. The second 

explanation related to the technical observation. In general, no appropriate equipment existed at that 

time to record shear bands, which are somewhat faint in the case of loose samples.”  

In order to provide a better understanding of physical mechanics of shear bands, Hicher and 

Wahyudi (1994) conducted a series triaxial tests with normal consolidated clay. In their study, the 

influences of testing factors such as boundary conditions, sample dimensions, over-consolidation 

ratio were examined. With the use of scanning and transmission electron microscopes, they also 

managed to observe the failures at the particle level, which showed a strong reorientations of the 

particles along the sliding surfaces, indicating that large displacements and rotation took place in the 

strain localized regions. Desrues et al. (1996) showed the entire pattern of faint localizations within 

dense and loose sand using computed tomography. Then Finno et al. (1997) found shear bands in all 

their loose samples with the help of stereo photogrammetry. Later, they were also confirmed by 

Alshibli et al. (2000b, 2010) and Bésuelle et al. (2007), who used computed tomography in the 3D 

condition as shown in Figure 1-9. Although imperfection (as a kind of discontinuity) can be regarded 

as a factor in the initiation of strain localization, it has been proven not to be the most essential one. 
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After years of attempts to guarantee the homogeneity of the stress–strain state within the specimen 

(uniform deposition of sand samples; enlarged, polished, and lubricated end platens; elimination of 

load eccentricities), researchers came to gradually accept that at a certain load level, the uniformity 

of the stress–strain state was always lost. Strain localization seems to be an inevitable aspect of all 

kinds of granular materials, regardless of the type used in the experiment. In fact, experimental types 

and the initial conditions affect the onset of the shear band. Results have shown that the onset of a 

shear band comes earlier in biaxial than in triaxial tests, and that the denser the specimen, the more 

easily the band appears. Furthermore, a reduction of the specimen size or its slenderness will result in 

the retardation of the band’s onset (Desrues, 2004). 

 

Figure 1-9 Investigations of shear band with computed tomography technique: (a) observation of Desrues; (b) 

observation of Alshibli; (c) observation of Bésuelle 

1.4.1.3 Inclination of shear band 

Turning to the orientation of the shear band, its inclined angle in relation to the principal stresses or 

strains is invariably considered. Three main equations are always used to predict the inclination. The 
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first classical solution for shear band inclination in frictional materials subjected to plane strain 

condition is known as the Mohr–Coulomb solution. According to the Mohr–Coulomb criterion, the 

inclination angle of the shear band is given by Eq. (1.1). C is the angle measured from the direction 

of the minimum principal effective stresses, is the mobilized angle of internal friction defined by 

Eq. (1.4) for cohesion-free materials, and 1and 3 are major and minor principal stresses, 

respectively. The second classical solution was proposed by Roscoe (1970) in the form of Eq. (1.2). 

R is the angle between the shear band and the direction of the minor principal strain increment d3; 

is the dilation angle at failure, which is defined by Eq. (1.5); 1
pd   and 3

pd   are major and 

minor plastic principal strains, respectively. Seemingly, the solutions given by Mohr–Coulomb and 

Roscoe represent an upper bound and a lower limit, respectively (Vardoulakis, 1980). In the case of 

associated plasticity, the mobilized friction angle equals the dilatancy angle, meaning that the Mohr–

Coulomb and Roscoe equations coincide. However, the non-associated plastic flow rule has been 

proven to be more reasonable for describing the behaviors of granular materials. Later, based on 

experimental observations, Arthur et al. (1977) proposed an intermediate solution for shear band 

inclination, as shown in Eq. (1.3). Shortly thereafter, Vardoulakis (1980) validated Arthur’s solution 

using the bifurcation theory, whereas Vermeer (1982) used compliance methods to derive an 

expression for the shear band inclination angle that agreed well with the solutions suggested by 

Arthur et al. and Vardoulakis. As may be observed, if associated plasticity is adopted, the solution 

obtained by Arthur’s equation will be the same as those garnered from the Mohr–Coulomb or Roscoe 

equations. In most articles, the shear band inclination is within a range between the Mohr–Coulomb 

and Roscoe solutions. 
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In fact, for many years no agreement could be reached between the experimental inclinations 

published by different authors. Some were closer to Mohr–Coulomb, some were closer to Roscoe, 

and others lay in between. Lade et al. (1996), who studied shear band formation via triaxial extension 

tests, investigated three different sands and found that in all cases, the Coulomb inclination was 

clearly favored. Alshibli and Sture (2000), meanwhile, conducted a comprehensive experimental 

study to investigate the effects of specimen density, confining pressure, and sand type on the stress–

strain and stability behavior of sand tested under the plane strain condition. Different from the 

conclusion of Lade et al. (1996), all their experimental investigations showed that the Mohr–

Coulomb solution overestimated the shear band inclination, whereas Roscoe’s prediction was closer 

to the mark. Another team, Saada et al. (1999), reported that the inclination of shear bands in sand 

appears to depend on the effective angle of friction and that of dilation in a combination defined by 

Arthur et al. (1977) and Vardoulakis (1980). Elsewhere, Finno et al. (1997) concluded that the 

measured shear band orientation in plane strain tests on loose, fine-grained, water-saturated sand in 

drained or undrained conditions, lay between the Coulomb and Arthur et al. solutions. That said, 

Vardoulakis et al. (1978) also found that the measured shear band inclination was extremely sensitive 

to boundary conditions and that loose specimens were more sensitive than dense ones. Similarly, Oda 

and Kazama (1998) later argued that difficulties were inherent in determining shear band inclination 

in their plane-strain tests, because the bands were not perfectly straight in the vertical sections of the 

sample; rather, they were generally curved. Thus, in their opinion, the inclination angle is not 

necessarily a material constant, but rather a variable sensitive to certain boundary conditions. The 

experimental results gained by Viggiani and Desrues (2004) also demonstrated that the shear band 

pattern depends on boundary conditions and the slenderness of the specimen. Various patterns of 

shear zones were observed, including even parallel and crossing zones. They claimed that the shear 

zone reflection at rigid boundaries was a typical mode of propagation in short specimens.  

1.4.1.4 Thickness of shear band 

Shear band thickness is another important aspect of shear banding in the research into strain 

localization. Based on direct experimental observations, Roscoe (1970) found that the width of shear 

bands is about 10 times the average grain diameter (or mean grain size) d50, a figure that was verified 
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by Scarpelli and Wood (1982). In the experimental observations gained from biaxial tests of different 

sands by Mühlhaus and Vardoulakis (1987), it was concluded that the average shear band thickness is 

about 16 times the mean grain diameter d50. The results garnered by Desrues (1984) proved that 

shear band thickness is augmented with increasing particle size, which specifically in the range of 

7.5 to 9.6 times the mean grain size (Mokni and Desrues, 1999). Yoshida et al. (1994) found that the 

most important factor controlling the shear deformation was particle size and that the shear band 

thickness was about 8–22 times the d50. Thereafter, strip foundation tests on dense SLB sand were 

carried out by Tatsuoka et al. (1997), who found that the thickness of the shear band was about 10 

times the d50. Based on the results of biaxial tests on three different sands, conducted by Alshibli 

(2000), the shear band thickness is in the range of 13–14 d50 for fine sand, 11–12 d50 for 

medium-grained sand, and 10–11 d50 for coarse-grained sand. In experimental tests of earth pressure 

performed by Nübel and Huang (2004), it was found that the thickness of the shear band was 11–15 

times d50 for active cases and 20 times d50 for passive cases. As we can observe from all this, almost 

all researchers normalize the shear band thickness using the mean grain size, and many have also 

found that the normalized shear band thickness is not constant. Instead, the conclusion that shear 

band thickness increases along with d50, and that normalized shear band thickness by d50 decreases as 

d50 increases, has been commonly validated and accepted.  

Own-wall friction tests were carried out by Tejchman and Wu (1995) using a plane strain 

apparatus developed by Vardoulakis et al. (1978) for dense and loose Karlsruhe sand with different 

wall roughness to study the shear localization in the boundary region. In their tests, strain 

localization was caused by geometrical effects (boundary condition) but not by material effects 

(heterogeneity and local defects). It was found that the thickness of the shear zone formed along the 

inclined wall was approximately 1 mm (2×d50) for a rough wall and 3 mm (6×d50) for a very rough 

wall. Thereafter, the experimental tests on dense and loose medium Karlsruhe sand (d50 = 0.45 mm) 

in a plane strain model silo with parallel (bin) and convergent walls (hopper) and a slowly moveable 

bottom, by Tejchman (2008), demonstrated that the shear band thickness was approximately 5 mm 

(11×d50) at the smooth wall, 20 mm (45×d50) at the very rough wall with loose Karlsruhe sand, and 

15–20 mm ((33–45)×d50) at the very rough wall with dense Karlsruhe sand. The thickness of the 

shear zone with coarse Karlsruhe sand (d50 = 1.0 mm) was 10 mm (10×d50) at the smooth wall, 25 
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mm (25×d50) at the very rough wall with initially loose sand, and 22–25 mm ((22–25)×d50) at the 

very rough wall with initially dense sand (Tejchman, 2008). 

1.4.1.5 Influencing factors for the formation of shear band 

Initial void ratio (initial density), confining pressure, particle size, boundary conditions, and the like 

have been proven to influence shear band inclination and thickness. Moreover, it is worth noting that 

different factors’ sensitivity on shear band inclination or thickness may be different for different 

cases. Experimental observation by Alshibli (1995) indicated that shear band inclination angle 

increases with confining pressure for F-sand, whereas it decreases for C-sand. For the M-sand, shear 

band inclination decreases with confining pressure for dense specimens but increases for loose 

specimens. In his study, for all sands, shear band inclination angles were larger for dense specimens 

than for loose specimens (Alshibli and Sture, 2000). Based on the experimental results reported by 

Desrues (1984), shear band inclination decreased with increasing confining pressure, and shear band 

thickness decreased as confining pressure and initial density increased. The results also showed that 

specimen boundary conditions and slenderness significantly influenced shear band patterns, 

including even parallel and crossing shear zones. The strain localization reflection at rigid boundaries 

was a typical mode of propagation in short specimens. Shear bands were steeper in dense specimens 

than in loose ones. By reducing the specimen’s size or slenderness, the onset of strain localization 

was retarded, and the inclination of the shear band was reduced and its thickness increased. What’s 

more, onset of shear localization occurred slightly before the peak stress ratio. Inclination was not 

affected by the mean grain size and non-uniformity of sand grading. The results also demonstrated 

that the imperfection dictated the location of the shear strain localization and acted as a trigger for 

the onset of shear strain localization. Yoshida et al. (1994) found that the shear band thickness 

decreased with the increasing confining pressure. The shear band inclination relative to the 

horizontal direction decreased with increasing particle size. The plane strain compression tests 

conducted by Pradhan (1997) indicated that shear band thickness depended on confining pressure 

and mean grain size. The thickness decreased with increasing confining pressure and decreasing 

particle size. In turn, the shear zone inclination depended on confining pressure, anisotropy, and 
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mean grain size. The inclination to the horizontal plane decreased as mean grain diameter and 

pressure level increased. 

In addition to widely accepted main factors such as initial void ratio, confining pressure, and 

particle size, some researchers (e.g. Rowe, Vardoulakis, Gudehus, Alshibli, and Alsakeh) believe that 

particles’ surface roughness and shape also significantly affect shear band forms. Experimental tests 

conducted by Rowe (1962)found that shear strength and dilatancy depended on the surface friction 

and particle packed ways which supported strain localization’s being affected by particle shape and 

surface roughness. Vardoulakis and Sulem (1995) argued that surface roughness would affect 

inter-particle slipping in granular materials. Alshibli and Sture (2000) found that shear band 

inclination decreased as grain size and angularity increased. Gudehus and Nübel (2004) found that 

grain angularity affected, to a certain extent, grains’ rotational resistance, which in turn affected the 

onset and development of shear band. Based on the experimental and numerical study conducted by 

Alsakeh (2004), it was obvious that surface roughness significantly affects the behavior of granular 

materials, which in turn affects shear band thickness, and that shear band thickness increases slightly 

with the surface roughness of the particles. Two indices, IR and ISPH, are used to define sphericity and 

roughness of the particle, with the higher these two indices the larger the dilation, which then leads 

to a thicker localization zone (Alsaleh, 2004). 

The foregoing experimental observations were mainly concentrated on a global scale. 

Nowadays, however, with the appearance and development of precise nondestructive detective 

devices, shear band observations have become possible on the micro scale, and the kinematic 

performance of grains in the shear band has also become increasingly clear. Grain rotations were 

observed by Kuhn (1999) within shear bands in the deforming of granular materials. Using an X-ray 

micro-tomography technique, Oda et al. (1982, 1997, 1998) thoroughly investigated the phenomenon 

of strain localization in granular materials and found that grain rotation significantly affected media 

dilatancy. Consequently, microrotations, a prominent cause of failure, must be taken into 

consideration with their couple stress. What’s more, columns of aligned grains were also observed 

inside the shear band (Oda et al., 1982; Oda et al., 1997; Oda & Kazama, 1998; Oda, 1999; 

Takemura et al., 2004). Recently, the results obtained from advanced discrete C-DIC in 3S-R 

confirmed once again the significance of grain rotations for strain localization. A clear 
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correspondence can thus be established between the zones of a specimen experiencing localization of 

continuum shear strain and the zones where grain rotations are more intense. A deeper analysis of the 

kinematics of particles in the shear band at grain scale and of their evolution is now possible. In 

constitutive modeling, one must understand the physical performance of materials from the micro 

scale to the continuum scale. Accordingly, the rotations of grains are important and should be taken 

into consideration regardless of the type of model or the solving technique. 

1.4.2 Constitutive models and theories 

Many researchers have studied strain localization in metal, composites, and geomaterials since the 

early 1900s, including by proposing constitutive models based on experimental data and phenomena. 

At first, scientists could only predict the failure condition of small scale models using rather rough 

mathematical equations. At that time, Coulomb’s equation for the shear strength was used to describe 

the shear failure of soil, but then Otto Mohr introduced the Mohr–Coulomb equation based on 

Coulomb’s theory (Labuz and Zang, 2012). Even this, however, was too simple to accurately predict 

failure, being unable to reasonably describe the mechanical behavior of granular materials. Since 

then, more and more advanced constitutive models have been proposed to study instability and strain 

localization based on plasticity theory while at the same time considering bifurcation theory, non–

coaxial theory, and so forth. 

Shear band formation is an example of a material instability, corresponding to an abrupt loss of 

deformation homogeneity in a solid sample that has been subjected to a loading path compatible with 

continued uniform deformation. In this sense, it may be interpreted as a deformation mechanism 

“alternative” to a trivial one and thus as a bifurcation or loss of uniqueness of a “perfect” equilibrium 

path. This bifurcation is distinctive for occurring even in an infinite body or under the extreme 

constraint of smooth contact with a rigid constraint. When localization begins, deformations migrate 

from a continuous mode to both continuous and discontinuous modes, and the continuum splits into 

localized and continua regions. Based on triaxial tests, Sulem and Vardoulakis (1990) argued that the 

bifurcation might occur during the hardening regime but not just in the post–bifurcation regime, a 

prediction that has been widely verified by later researchers. They grouped two modes of bifurcation: 

localized and diffuse. These bifurcation modes provide sufficient information about failure progress 
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in materials. It was argued that diffuse mode might occur in the pre-peak regime, whereas 

localization mode had more chances to occur in the post–peak regime. The bifurcation theory was 

also used to explain and trace the strain localization phenomena that occurred in the post–failure 

regime. These work can be found in Cheng (1971), Vardoulakis and Sulem (1979, 1983, 1990, 1995), 

Saada (1999), Bauer (1999), Darve et al. (1987, 1995, 2000, 2004), Nova et al. (1994, 2003), Nicot 

et al. (2007, 2009, 2011, 2017) and Daouadji et al. (2009, 2012), among others. 

Strain softening is known to be a significant accompanying characteristic even though it is not a 

necessary factor of strain localization. Many constitutive models that contain softening behaviors 

have been proposed to describe the stress–strain behavior of materials or to study strain localization 

phenomena. Later on, researchers have increasingly found that the non–associated flow rule was 

more reasonable and widely used in describing stress–strain behavior, which can also result in 

structural instability. According to Rudnicki and Rice (1975), strain localization might occur even in 

strain hardening models when non–associated flow rules have been adopted. Li et al. (2002) also 

proposed a critical state condition of losing stability for dynamic analysis of saturated porous media 

with non–associated flow rule. In other words, even without softening behavior, but only if the 

tangent modulus matrix becomes asymmetric, materials will become unstable, and shear strain 

localization phenomena will occur in the specimen or structure. Many researchers have found that 

when shear strain localization occurs, the direction of the principal stress no longer coincides with 

that of principal strain. Moreover, the inherent anisotropy of the majority of materials is believed to 

be the main characteristic, which is also a trigger to the strain localization. In this sense, the 

proposition of non-coaxial constitutive models, being able to describe the principal stress rotation 

and anisotropy, is of great significance. Accordingly, some researchers have proposed the non–

coaxial theory, which can be related to local deformation and instability. For example, Rudnicki and 

Rice (1975) added non–coaxial terms into the classical Drucker–Prager model with a view of 

analyzing strain localization problems. Papamichos and Vardoulakis (1995) argued that the 

inadequacy of the ordinary flow and deformation theories of plasticity for explaining experimental 

results having to do with shear band formation led to the development of a consistent non–coaxial 

plasticity theory. Moreover, using non–coaxial theory, theoretical predictions for shear band 

orientation and its onset has been shown to agree well with experimental observations of biaxial tests. 
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Yatomi (1989) systematically extended the well-known Cam-Clay model developed for small strains 

to use in the model for finite strains, and then incorporated a non–coaxial term in the model to 

examine the effects of the non–coaxial term on shear band formation. Zhao (2000) analyzed the 

influence of the non–axial flow rule on shear band formation and proposed the modified method of 

considering the non–coaxial terms. Qian (2006) compared numerical predictions and experimental 

data. All results of the analysis indicated that a non–coaxial plastic flow theory needs to be 

incorporated into the classical constitutive model so as to describe the bifurcation, which would be 

able to correctly predict the state of bifurcation. Huang et al. (2009, 2017) accurately predicted the 

strain localization of sand sample using a non–coaxial elastoplastic model. 

1.4.3 Numerical analysis 

Based on the strain localization phenomena of geotechnical structures and the laboratory samples, 

several analytical and numerical methods have been adopted to study and describe these failure 

modes. The rapid progression of computing science technology has greatly increased the efficiency 

and precision of calculations in geotechnical engineering. To achieve more accurate solutions, 

numerical simulation methods (e.g., the finite element method, the discrete element method) have 

seen wide introduction in geotechnical engineering. The development of numerical algorithms and 

other computer-based numerical schemes has reached a stage at which solutions for many different 

geotechnical problems are obtainable. Moreover, thanks to the significant progress in numerical 

simulation techniques, shear band onset and propagation in relatively complex situations can be 

traced closely, albeit still at great computational cost. 

1.4.3.1 Limit analysis 

Based on laboratory tests, the numerical prediction of the failure of structures in geoengineering is 

always used, especially in practical engineering. For example, the conventional limit equilibrium 

method is a very useful stability analysis. Stability analysis using the limit equilibrium method was 

first performed by Hultin and Pettersson in 1916, as documented in 1955 (Janbu, 1959). A safety 

factor Fs should be estimated to judge the stability of slopes, as still widely used in geotechnical 

engineering nowadays (Michalowski, 1995). According to the model’s tests results for a wall, 
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conducted systematically by Cambridge from 1962 to 1974, Leśniewska (2000) systematically 

studied shear band patterns, formations, and mechanism using the limit equilibrium method.  

However, doing so requires so many assumptions that only very experienced engineers can 

make a reasonable prediction. In short, the limit equilibrium method is no more an accurate method 

than any others in analyzing structural failure (Vardoulakis et al., 1978). 

1.4.3.2 DEM based analysis 

Granular materials are of great importance in civil engineering or in manufacturing processes 

whether they are granular soils in nature or raw materials for industries. Because of their discrete 

nature, the behavior of such materials is complex and it is not trivial to carry out their modelling. 

DEM (discrete element method) (Cundall and Strack, 1979; O'Sullivan, 2011) is a very powerful 

numerical tool to simulate the granular materials with the significance of physics. The DEM 

modeling involves specifying the equations of motion for a system of discrete bodies, and solving the 

resulting equations. The mechanical response of granular materials in DEM is governed by the 

contacts between particles and also between particles and boundaries. Therefore, the physical 

quantities in microscale, such as particle rotations, contact orientations, contact forces, etc., can 

easily be measured. If the micro-mechanism of materials is of great interests to be focused on, DEM 

is undoubtedly a good choice. 

The realistic description and accurate solution of DEM have attracted a lot of attentions for both 

academic research and application in civil engineering. The materials in local zones must undergo a 

collapse before a global failure of the structures, and the microstructure of granular materials affects 

a lot the macro behavior. Numerous researchers have contributed to study the strain localization 

phenomena in a microscale level with DEM. Bardet and Proubet (1991) investigated the structure of 

the persistent shear bands by DEM, linking the particle rotations with the shear band formation in 

granular materials. By means of DEM, Wang et al. (2007, 2010) analyzed the shear band in a direct 

shear test, including the onset, evolution, shape, etc. Shear band simulations with DEM were 

intensively investigated by Jiang et al. (2006, 2010, 2011, 2012, 2013a, 2013b, 2013, 2015) from 

biaxial tests to geostructures. Nearly all the factors, such as confining pressure, initial void ratio, 

grain rotations, rolling resistance at particle contact, affecting the formation of shear band were 
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analyzed. Lin and Wu (2016) simulated the biaxial test and the simple shear test with DEM, it was 

found that high rotations occurred inside the shear band or in the corners, and left the rotations of the 

grains outside shear band almost zero as shown in Figure 1-10. Almost all the above researchers 

highlighted the importance of particle rotations to the shear band development, which is consistent 

with the experimental observations. 

However, the numbers of contacts between particles are limited by computational power, 

preventing the use of the discrete element method for modeling a real scale structure (e.g., a dam, 

slope, tunnel, foundation) containing very huge numbers of particles.  

 

Figure 1-10 DEM simulations of shear band in: (a) biaxial test; (b) simple shear test 

1.4.3.3 Finite element analysis 

Compared to DEM, the finite element method is more efficient and less expensive when modeling 

large scale geostructures, which should be divided simply by fine or coarse mesh. Regions of 

particular interest should feature more elements, being finely divided so as to obtain more accurate 

solutions. 

The finite element method offers an effective way to solve partial differential equations 

containing the mechanics and thermal unknowns. The standard procedure is displayed in Figure 1-11. 

First, structures (even those having very complex geometry) are discretized into smaller elements, 

creating a mesh during the preprocessing stage. During this stage, material properties are also 

assigned for all integration points (Gauss points) of each element. At the same time, all boundary 
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constraints, the initial stress state, and external loading are also set. Second, fundamental unknowns 

such as displacement, reaction forces, stresses, and strains, as well as state variables, will be solved 

during the solving–processing stage. This always features two main solvers: the explicit solver and 

the implicit solver. The latter is used chiefly to calculate static problems and the former chiefly to 

calculate dynamic problems. The third stage is that of post–processing, during which all solutions 

can be visualized and output. The whole progressive failure process can be dynamically reproduced 

and traced. In the present study, the finite element method will be adopted to simulate strain 

localization phenomena. 

 

Figure 1-11 Standard procedure of Finite Element Analysis 

Up to now, various finite element implemented constitutive models have widely been used to 

simulate the failure of specimens or geotechnical structures. In order to get more accurate solutions, 

two-scale approach has recently been adopted to investigate the strain localization of granular 

structures by combining the advantages of DEM and FEM (Nitka et al., 2009a; Nitka et al., 2009b; 
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Nitka et al., 2011; Guo and Zhao, 2014; Desrues et al., 2015; Guo and Zhao, 2015, 2016; Shahin et 

al., 2016). FEM is used to describe the global mechanical responses and DEM mainly aims at the 

local mechanics of granular materials. Therefore, the shear band in granular materials can be 

accurately and effectively predicted. 

However, it should be worth noting that most FE implemented models are based on the 

conventional continuum mechanics. In this sense, when bifurcation occurs, the partial differential 

governing equations will change their properties, resulting in pathological solutions and the solutions 

seriously depending on the mesh sizes (the detailed derivations of the numerical pathological 

solutions of static and dynamic problems and a mesh dependency example can be referred in the 

Appendix at the end of the manuscript). That is to say, shear band thickness can vary from wide to 

narrow when the element mesh is divided from coarse to fine. The fundamentals behind the mesh 

dependency problems are due to the lack of internal scale in the constitutive models to reflect the 

microscale structure. Therefore, the introduction of non–localized regularization approaches, aiming 

at dealing with mesh dependency problems into FEM is of great significance, which will be 

introduced in detail in the following section. 

1.4.4 Non–localized regularization approaches 

Nowadays, more and more constitutive models (Jefferies, 1993; Wu & Bauer, 1993; Wu et al., 1996; 

Gajo & Wood, 1999; Yao et al., 2004, 2008; Yin et al., 2010a, 2010b, 2014) have been proposed to 

describe the behavior of granular soils. However, these models all fall within the framework of 

classical continuum theory. Numerical and analytical solutions for strain localization under classical 

continuum mechanics are known to suffer from serious mesh dependency. The pathological solutions 

are caused by the loss of ellipticity when using governing field equations for static problems and 

hyperbolicity for dynamic problems. Accordingly, non–localized methods are needed to rectify this 

problem. Any technique that can remove or reduce the spurious mesh dependency observed during 

the simulation of strain localization phenomena is called a regularization technique. In most cases, 

regularization techniques alleviate mesh dependency problems when simulating strain localization 

phenomena by incorporating at least one implicit or explicit intrinsic parameter with length scale. 

The length scales incorporated in the models, usually characterizing the microstructures of material, 
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manage to define the width of the strain-localized regions. The main regularization methods include 

viscosity approach, nonlocal theory, gradient theory, and micropolar theory. However, as main 

regularization techniques, the advantages and disadvantages of these regularization approaches are 

rarely symmetrically summarized and compared. Accordingly, a comprehensive review of these 

regularization approaches is necessary for a deep understanding of the differences between these 

approaches and for the selection of the appropriate regularization method in different cases. 

1.4.4.1 Viscosity regularization 

Soils and granular materials have important rate-dependent behaviors that are a function of their 

viscosity. For example, strain rate within the shear band exceeds that outside it; when the difference 

is obvious enough, shear bands will form. Viscosity regularization relies on high deformation rates in 

the localized region being reduced and distributed in the finite element mesh by means of the 

viscosity. Needleman (1988) argued that even without clear internal parameters for the dimension of 

length in the classical viscoplastic model, rate-dependent constitutive models implicitly introduce a 

length scale into the governing equations, at which the incremental equilibrium equations for 

quasistatic problems remain elliptic and wave speeds for dynamic problems remain real, even in the 

presence of strain softening. The pathological mesh sensitivity associated with numerical solutions of 

localization problems for rate-independent solids is eliminated. In this way, introducing the viscosity 

into the elastoplastic model with strain softening behavior is able, in some degree, to reduce the mesh 

dependency of finite element solutions. It is thus not surprising that the fluid in saturated media 

should greatly affect the degree of mesh sensitivity. 

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic 

behaviour of solids. The elastic response of viscoplastic materials can be represented in 

one-dimension by Hookean spring elements. Rate-dependence can be represented by nonlinear 

dashpot elements in a manner similar to viscoelasticity. Plasticity can be accounted for by adding 

sliding frictional elements as shown in Figure 1-12.  
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Figure 1-12 One-dimensional viscoplastic model for example 

Viscoplasticity is usually modelled in three-dimensions using overstress theory of Perzyna (1963, 

1966) or Duvaut and Lions (1972). In these models, the stress is allowed to increase beyond the 

rate-independent yield surface upon application of a load and then allowed to relax back to the yield 

surface over time. The yield surface is usually assumed to be rate-independent in such models. 

Rate-dependence was initially introduced to describe mesh sensitivity for localization problems in 

metal, as by Needleman (1988), Shawki and Clifton (1989), and Wu and Freund (1984). Later, it was 

applied to deal with the instability and localization phenomena of saturated porous media (Loret and 

Prevost, 1991), of concrete and rock fracture (Sluys and de Borst, 1991; Sluys, 1992; Sluys and de 

Borst, 1992), and of dilatant materials and clay (Higo, 2004; Karstunen and Yin, 2010; Oka et al., 

1994, 1995, 2002; Yin and Hicher, 2008; Yin and Karstunen, 2011; Yin et al., 2010a, 2010b, 2011, 

2015a, 2015b, 2017, 2018). Building on the work of Sluys and de Borst (1991, 1992), Wang et al. 

(1997) introduced a consistency viscoplastic model in which the viscosity is implemented by means 

of a rate-dependent yield surface. It has been proven to have a faster global convergence than the 

overstress viscoplastic models ((Perzyna, 1963, 1966) and (Duvaut and Lions, 1972)). Based on 

viscoplastic models proposed by Perzyna and Duvaut-Lions, Dias (2004) also proposed a simple 

model for viscous regularization of elastoplastic constitutive laws with softening. This model, when 

tested in a problem with slip-driven softening (von Mises material) as well as in a problem with 

decohesion-driven softening (Cam-Clay model), exhibited its capability to regularize the solution. 

With the regularization of viscosity, mesh dependency problems have been significantly 

alleviated, allowing shear band thickness to be predicted and specified. For example, in Eq. (1.6) the 
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strain rate distribution along a one-dimensional element was implicitly expressed by the internal 

length scale l in the consistency model proposed by Wang et al. (1997), 
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where  is a small constant that represents the cutoff value of the relative strain rate at the edge of the 

shear band, G is the shear modulus and g
Gc   is the elastic shear wave speed, m is the 

viscosity parameter, and h is the strain softening parameter. Wang et al. (1997) found that the smaller 

value of the internal length scale l and the imperfection size w determined the shear band thickness 

(L = min[l, w]). In their numerical examples, they observed that on mesh refinement, the shear band 

thickness converged to the material length scale l as defined in Eq. (1.6). Clearly, the thickness of 

shear band will decrease when the viscosity m decreases or when the absolute value of the softening 

parameter | h | increases (h is a negative value). If the imperfection size w was taken into 

consideration, it was observed that the imperfection size dominated the shear band thickness when it 

was smaller than the material length scale (w < l). In contrast, if the imperfection size exceeded the 

material length scale, the influence of the imperfection would disappear, and the material length 

scale determined the shear band thickness. 

The main advantage of viscosity regularization is that it does not need any additional global 

discretization, because it requires only supplementary operations at the local level in constitutive 

models, whose implementation in common nonlinear finite element packages is very simple. 

Furthermore, it works equally well for both the decohesion failure mechanism and the slip-driven 

softening failure mechanism. Its main disadvantage is the need to add an artificial feature of 

“viscosity” to describe the material behavior when it does not exhibit rate dependence, that its 

applicability is obviously limited to transient loading conditions, and that the regularizing effect 

rapidly decreases for slow loading rates or when approaching the rate-independent limit. 

1.4.4.2 Nonlocal theory 

Modern nonlocal elastic constitutive models of the integral type—that is, using weighted spatial 

averages—first saw use in the 1960s, motivated by homogenization of the atomic theory of Bravais 

lattices. By means of nonlocal approaches, researchers managed to describe the damage and 
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dislocation phenomena in crystals on a scale comparable to the range of interatomic forces. They 

found that nonlocal models could approximately reproduce the dispersion of short elastic waves and 

enhance descriptions of interactions between crystal defects such as voids, interstitial atoms, and 

dislocations (Eringen, 1966, 1972a, 1972b, 1976; Eringen and Edelen, 1972; Kroner, 2012; Kunin, 

1966) . Several years later, plastic nonlocal models were first proposed as a way of describing the 

stress field at a fracture front (Ari and Eringen, 1980; Eringen, 1981, 1983). However, Eringen’s 

formulation did not mean to serve as a localization limiter, and the averaging operator was applied to 

the total strain tensor, which could lead to spurious instabilities. Later, nonlocal plasticity theory was 

improved and initially introduced to describe strain localization phenomena of softening materials by 

Bažant and Lin (1988). After these initial developments, a comprehensive number of relevant 

contributions rapidly emerged (Perrin and Devaux, 1994; Strömberg and Ristinmaa, 1996; Nilsson, 

1997; Jirásek, 1998; Needleman and Tvergaard, 1998; Nilsson, 1998; Fuschi and Polizzotto, 1999; 

Borino and Failla, 2000; Jackiewicz, 2000; Benvenuti and Tralli, 2003; Engelen et al., 2003; 

Jackiewicz and Kuna, 2003; Jirásek and Rolshoven, 2003; Rolshoven, 2003; Bobinski and Tejchman, 

2004; De Angelis, 2007; Andrade, 2013). Nonlocal regularization has been proven to reduce mesh 

sensitivity when simulating the damage behavior of ductile materials with microdefects and strain 

localization phenomena caused by strain softening. 

The derivation of any nonlocal theory starts from the choice of the variable to be enhanced by 

nonlocality. Typical choices are, among others, the regularization of variables related to kinematics 

(such as the strain tensor), regularization of internal state variables (such as scalar measurements of 

the amount of plastic strain or damage) or regularization of thermodynamic forces power-conjugated 

with internal state variables (for instance, the elastic energy release rate in damage models). Faced 

with this wide range of possibilities, deciding which option is more effective is difficult. Indeed, the 

choice of the nonlocal variable depends on the kind of material to be modeled, as well as on the 

nature of the problem to be solved. In the particular case of elastoplastic damaging ductile solids, 

internal degradation, which is closely related to the localization phenomena, is usually chosen as an 

internal non-localized variable. After the nonlocal variable is chosen, its nonlocal counterpart can be 

expressed, in an integral-type formulation, by means of the spatially weighted averaging integral. For 
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example, the spatial average of the magnitude of the plastic strain p at location x has been suggested 

by Bazant et Lin (1988), as shown in Figure 1-13, 

 

Figure 1-13 Spatial average: (a) profiles of micro strain and average strain along a segment with point x in the 

centre of a representative volume; (b) sketch of the representative volume with the centre point x; (c) the 

representative volume near the surface of the body; (d) the weighting function for non-local averaging integral and 

its relation to the internal length scale l 

and the formulations are presented as follows, 
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in which 

    r V
V dV x s x   (1.8) 

      ' , rV  x s s x x   (1.9) 

The brackets  denote the averaging operator, with p  and 
p , the local and nonlocal 

internal variables, respectively. V is a finite volume of the body that is dictated by one constitutive 

parameter, generally called intrinsic length l with a dimension of length. Vr has approximately but not 

exactly the same meaning as the representative volume in the statistical theory of heterogeneous 

materials. (x) is the weighting function that defines the averaging and s the general coordinated 

vector. Because numerical computations show much better convergence if the weighting function is 

smooth, the error density function (normal distribution function) has been suggested as the suitable 

form of the weighting function (Bažant and Lin, 1988), 

     2k l
e  x

x   (1.10) 
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in which, for one, two, and three dimensions 

2 21D: ,x k  x  (1.11) 

2 2 22D: , 2x y k  x  (1.12) 

 1 32 2 2 23 D : , 6x y z k    x  (1.13) 

l is the characteristic length, a material property that defines the diameter of the representative 

volume (a line segment, circle, or sphere), and is determined pursuant to the condition that the 

representative volume have the same volume as the normal distribution function extending to infinity 

(x, y, z are the Cartesian coordinates). For numerical finite element computations, only those 

elements whose integration points are distributed in the domain of 2l around x need to be included in 

the sum using the Gauss integration method. For those elements outside the domain, the error density 

function  is negligible. As for the strain localization problems caused by softening, the nonlocal 

average should simply be applied to those variables controlling strain softening. 

Nonlocal approaches work well for both types of failure mechanisms (mode I: decohesion; 

mode II: slip). For total stress–strain relations (without decomposition into elastic and plastic parts) 

the nonlocal approach is computationally more efficient than the gradient models discussed in the 

next section. An example is the elasticity-based nonlocal damage model proposed by Pijaudier-Cabot 

and Bažant (1987). A definite disadvantage of current nonlocal formulations is that they are at odds 

with existing numerical strategies (Simo et al., 1989). Gradient models, for their part, are much more 

amenable to an efficient numerical implementation by preserving their favorable property of 

containing an internal length scale (de Borst and Mühlhaus, 1991). Another disadvantage is the 

consistency condition resulting in an integral-differential equation instead of an algebraic equation 

that can be solved locally. 

1.4.4.3 High-order gradient (grade-n) theory 

Generally speaking, gradient models and nonlocal models belong to a common theoretical category, 

with the gradient model a particular nonlocal model. Gradient models can be derived from nonlocal 

models by expanding the kernel of the integral employed in the averaging procedure for the inelastic 

strains. The gradient theory has been widely used as a very effective tool for regularizing finite 



 

38 

 

element solutions so as to study strain localization phenomena in geotechnical engineering. Gradient 

dependence was first used within the theory of rigid plastic material to analyze persistent slip bands 

(Aifantis, 1984, 1987) and shear bands (Coleman and Hodgdon, 1985) in metals. Vardoulakis and 

Aifantis (1989, 1991) used the second-order gradient theory in studying the heterogeneous 

deformation in granular media. They modified the flow theory and the yield function by 

incorporating a high-order gradient, and use of an appropriate length scale allowed them to capture 

the shear band thickness. For more detailed formulations and to gain a better understanding of its 

application, the paper of Vardoulakis and Sulem (1995) should be referenced by interested readers. 

Ever since, many other researchers have also contributed greatly to this area. Chambon et al. (2001) 

proposed a local and Cosserat second-order gradient theories model for dealing with localization 

phenomena. Chikazawa et al. (2001) used a gradient-dependent viscoplastic constitutive model to 

study the strain localization of water saturated soils and found strain localization to be highly 

dependent on strain gradient. Borja (2002) obtained a finite element solution for the shear banding 

evolution using the deformation gradient to map between stress tensors. Voyiadjis and Song (2002) 

used the gradient theory to capture strain localization of porous media by considering 

micro-interactions between grains. The thermoelastic Helmholtz free energy function was dependent 

on those internal variables and their second-order gradients. Voyiadjis and Dorgan (2003) used the 

second-order gradient theory in the kinematic hardening by introducing an internal length scale. 

Even so, the internal length has no clear physical meaning, being merely a mathematical method. 

Now, with a view to explain the procedure of gradient continuum theory (second-order 

generally suffices), we revisit the gradient plasticity formulations proposed by de Borst et al. (1991, 

1993, 1996), in which they restricted the yield function to second-order derivatives so that the yield 

function was also dependent on the Laplacian of a hardening parameter in addition to the hardening 

parameter itself (de Borst and Mühlhaus, 1991; de Borst et al., 1993; Pamin, 1994; de Borst and 

Pamin, 1996): 

 2( , , ) 0p pf   σ   (1.14) 

Compared with nonlocal theory, a distinct advantage of gradient plasticity is that the 

consistency condition yields a partial differential equation instead of an integral differential equation, 

 2 0f h g     Tn σ     (1.15) 
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where nT, h, and g are given by 
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in which g is a positive gradient influence coefficient with the dimension of force (Pamin, 1994). For 

g = 0, the classical plastic flow theory is retrieved. The enhanced gradient theory aims at preserving 

the well-posedness of the governing equations for materials that do not comply with the material 

stability requirement. When a softening relation between stresses and strains (h < 0) is assumed or 

when non–associated plastic flow is postulated as reproducing an experimental response of soil, the 

tangential stiffness matrix Dep becomes non–symmetric, leading to an inclination of instability. For 

strain softening materials (h < 0), the gradient term seen in Eq. (1.18) can act as a stabilizer and 

guarantee ellipticity of the governing partial differential equation Eq. (1.15) after the onset of plastic 

deformation. For example, in a one-dimensional problem (de Borst et al., 1993), the gradient 

influence coefficient g is expressed by a strain softening parameter and an internal length parameter 

l: 

 2 0g hl     (1.19) 

 

Figure 1-14 Typical evolution of plastic strain distribution in strain localization of softening materials 

For strain hardening materials, the Laplacian term with g > 0 is also demonstrably able to smooth the 

solution. Similar observations can also be obtained for the general cases of three-dimensional 

continua (Mühlhaus and Alfantis, 1991; de Borst and Mühlhaus, 1992). The width of localized zones 

in strain localization problems, as measured by the evolution of plastic strain, has been estimated 
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analytically by a constant w = 2l in a one-dimensional localization problem (pure tension of a bar 

with length L) (de Borst and Mühlhaus, 1992; Pamin, 1994). 

Gradient plasticity theory has proven to be highly versatile for describing localization of 

deformation in a continuum medium while also being computationally much more efficient. The 

regularization of the gradient approach is effective for both mode I (decohesion) and mode II 

(frictional slip) failures. A disadvantage of the approach is the introduction of an additional variable 

at the global level in addition to the conventional displacement degrees of freedom. Moreover, the 

parameter determination of is not an easy task. Importantly, the gradient terms disappear from the 

constitutive equations if a homogeneous state of strain and stress is analyzed, and although the 

gradient terms are negligible if strains vary slowly in the pre–peak regime of softening problems, 

they exert a significant influence in the presence of strain localization (in the post–peak regime). 

Because higher-order continuum models have no effect for homogeneous deformations, additional 

parameters of high-order continuum models cannot be measured directly from elementary tests such 

as uniaxial or triaxial tension or compression tests; rather, a semi-inverse method is required whereby 

the experimental results of different types of tests are fitted in the post–peak regime. 

1.4.4.4 Micropolar theory 

Micropolar theory is one of the most important regularization approaches, which has a more physical 

meaning than a wholly mathematical technique when compared with other regularization approaches 

(e.g. nonlocal and high-gradient). Many researchers (Mühlhaus and Vardoulakis, 1987; Mühlhaus, 

1989; de Borst, 1991; de Borst and Sluys, 1991; de Borst, 1993; Tejchman and Wu, 1993, 1996; 

Tejchman et al., 1999; Pasternak and Mühlhaus, 2001; Huang and Bauer, 2003; Nübel and Huang, 

2004; Huang et al., 2005; Li and Tang, 2005; Alshibli et al., 2006; Arslan and Sture, 2008b; Tang et 

al., 2013; Tang and Hu, 2017) have used micropolar theory as a regularization approach for 

analyzing strain localization problems, and it has proven to be effective enough to alleviate or even 

solve mesh dependency problems by preserving the ellipticity of the governing partial differential 

equations for boundary value problems. 

Cosserat theory (micropolar theory) is a generalized classical continuum theory that includes 

couple stress. Couple stress theory (constrained Cosserat theory) considers the possibility of body 
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couples existing in the interior of the body and of surface couples existing on the surface of the body. 

According to Ristinmaa (1996), one of the oldest theories belonging to this class of models is the 

centennial couple stress theory originally proposed by Voigt (1887) and later developed by the 

Cosserat brothers (1909), who removed the connection between the rotational field and the 

displacement gradients. Because of its relative complexity, however, it received little attention. 

Investigations into Cosserat theory saw an uptick in the early 1960s with the work of, notably, 

Mindlin (1962) and Koiter (1969). Ever since then, Cosserat theory has also been called micropolar 

theory, a terminology in vogue at that time that has also been adopted in the present study. Interest in 

the applications of Cosserat theory began to increase in the mid-1970s when specialists in 

geotechnical engineering began to link Cosserat kinematics and strain localization phenomenon. 

Finite element calculations using micropolar theory with independent rotations began with Mülhaus 

(1989) and de Borst and Sluys (1991, 1991). After that, more and more micropolar constitutive 

models were implemented and adopted to analyze the shear localization problems of other 

microstructural problems by means of the finite element method. 

In classical continuum mechanics, the Cauchy strain tensor can be decomposed into a 

symmetric part (the stretch tensor) and an antisymmetric part (the spin tensor) regardless of whether 

it is the Green–Lagrangian strain tensor or the Eulerian strain tensor. The classical spin tensor 

generally corresponds to the macro-rotation caused by differences in displacement gradients. 

However, in practical cases, the onset and evolution of shear bands is closely related to grain rotation 

as well as non-uniform displacements (global rotation) or translational deformations that have also 

been confirmed by experimental results (Desrues et al., 2007) . Unlike in classical continuum 

mechanics theory, which accounts for only macro-rotations, micropolar theory takes into account the 

independent micro-rotations of material points, as seen in Figure 1-15 (an element having four 

material points): 
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Figure 1-15 Separation between micro-rotation and macro-rotation in 2D space and their effect in the kinematics 

Rotational degrees of freedoms are independent of the displacement field and are linked only at 

the constitutive level and by balance equations. From a material point of view, these rotations can be 

considered as the rotations of grains or aggregates. Accordingly, each grain or aggregate has 

additional rotational degrees of freedom beyond just translational degrees of freedom. Thus there are 

six degrees of freedom (three translational and three rotational) in three-dimensional problems and 

three (two translational and one rotational) in two-dimensional problems for each point: 
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where x, y, and z are the micro-rotations in the x, y, and z directions. These micro-rotations will 

cause the micro-curvatures and the corresponding energy-conjugated couple stresses in the 

micro-element surfaces. Moreover, the normal stresses are no more homogeneous, for the theorem of 

conjugate shearing stress is no better satisfied. For 3D problems, the generalized stress and strain 

components in micropolar theory are augmented: 
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For 2D problems, the generalized stress and strain components are simplified: 
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where , , ,xy yx xz zx zy yz         and mij are the coupled stress components (mii are the torsion 

ones and mij are the bending moments). ij are the gradients of micro-rotations j in direction i. 

Of the two new added micro–length scale parameters lc and lt, lc is the length scale parameter 

related to bending couple stress, and lt is related to torsion couple stress. When the microstructure is 

considered, a typical strain localization problem such as the relation of shear band to microstructure 

can be reasonably predicted to give the thickness of the specified shear band. At the same time, the 

high-order terms guarantee the ellipticity of the governing partial differential equations, especially in 

the post-peak regime—and the mesh dependency problems have, obviously, been removed.  

Micropolar theory can yield efficient and fully mesh-independent solutions for static problems 

as well as for dynamic problems. In analyzing the problems of the frictional slip failure mode (mode 

II failure type) involving a high localized shear band, the micropolar approach seems to be a 

particularly natural framework, being easily implemented and physically meaningful. However, a 

disadvantage of the micropolar continuum theory is that the rotational degrees of freedom are 

activated only under shear loading. Numerical results suggest that for failure problems in which 

decohesion plays a prevailing role (mode I failure type), the rotational degrees of freedom become 

inactive and the microcurvatures remain zero, as do the work-conjugated couple stresses. That is to 

say, when decohesion rather than frictional slip is the predominant failure mode, the regularization 

effect of micropolar theory is generally too weak to preserve the ellipticity of the boundary value 

problems. Instead, for tensile loadings in which decohesion is the main cause of structure failure, 

nonlocal models (Bažant et al., 1984) are very effective at keeping the boundary value problem 

elliptic. It is worth noting that strain localization in dry and saturated specimens has been studied 

experimentally by many researchers on loose sand as well as dense sand, demonstrating that strain 

localization is the dominant failure phenomenon. It is also the main failure mechanism for 

geostructures in reality. There is no doubt, then, that micropolar theory can be used to analyze strain 

localization problems in geomaterials. For anyone who is deeply interested in micropolar theory, the 

full formulations of micropolar theory can be found in the Appendix at the end of the manuscript. 
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1.4.4.5 Discussions of regularization methods 

Inevitably, every regularization method has limitations, and in some cases in which a single 

regularization method does not work well, a regularization method combining at least two 

regularization approaches might be efficient. In general, the combination of viscosity with another 

regularization technique has seen wide adoption. For instance, Wang et al. (1997, 1998) proposed a 

model regularized by both rate dependency (viscoplasticity) and plastic gradient that was effective 

for both quasistatic and dynamic problems when dealing with mesh dependency problems. Moreover, 

interactions between these two methods in controlling shear band thickness have also been discussed. 

Oka et al. (2000, 2002) proposed a gradient-dependent elastoviscoplastic model for clay to study the 

strain localization problems and deformation mode. Based on a typical plastic constitutive model 

proposed by de Borst et al. (1997) that featured both rate and gradient dependence for strain 

localization analysis, Zhang et al. (2003, 2004) predicted the internal length scale of the combined 

model for general cases and illustrated the interactions between different length scale parameters for 

rate dependency models and gradient plastic models from a mathematical point of view using a 

one-dimensional example. Tang and Li (2007) proposed a coupled Biot-Cosserat model by 

combining both Biot’s theory (rate-dependency) and Cosserat continuum theory with a view to 

simulate strain localization phenomena caused by strain softening in saturated porous media. 

Numerical results demonstrated the developed model’s ability to maintain the well-posedness of 

boundary value problems while incorporating strain softening behavior, as well as the capacity to 

model strain localization phenomena in saturated media. 

From the above descriptions of the four main regularization techniques, it can be seen that the 

domain of the strain localized region is closely related to the internal length scale, however, the 

meanings of different length scales and their relations to the thickness of shear band are not identical. 

For viscoplastic model, take the consistency model proposed by Wang et al. (1997), the shear 

modulus, shear wave speed, viscosity parameter as well as the softening parameter, etc. are believed 

to decide the thickness of shear band, and these factors can be related to the cut off value of the strain 

rate at the edge of the shear band by an implicit parameter with length scale. What’s more, under the 

approximate form of the relation, the implicit length scale is able to denote the thickness of shear 

band. For non-local theory, certain internal variables closely related to the strain localization are 
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averaged in a non-local finite volume to reach the regularization effectiveness, and the finite 

representative volume decided by the parameter with length scale is believed to be the damaged 

region and strain localized region. In this way, the size of the strain localized region is controlled by 

the internal length scale and the chosen weighting function.  For gradient theory, a special case of 

the non-local theory, the gradient term can be denoted by the softening parameter and the internal 

length scale, then it can be thought to reflect the fact that below the certain size scale the interaction 

between the microstructural carriers of the deformation is non-local, resulting in the thickness of 

shear band decided by the internal length scale. For a micropolar model, the independent grains’ 

rotations result in the couple stresses, therefore, in 2D problems the internal length scale is naturally 

regarded as the bending length between grains or aggregates for granular materials. Thus, the 

thickness of shear band can be predicted by the value of the internal length parameter as the relation 

between the grain size and the shear band thickness in experimental tests. 

In conclusion, a single or combined regularization approach has always been adopted for 

reproducing strain localization phenomena in geotechnical engineering using finite element method. 

No matter which regularization method is adopted, at least one explicit or implicit internal length 

scale parameter must generally be incorporated into the constitutive model. In the research of various 

scientists, internal length scale parameters have also been hypothetically related to the microstructure, 

with random constants distributed within a certain range of the ratio of a structure’s typical 

dimension, internal defection, or even interactions, indicating that the physical meanings of internal 

length scales values have not been obtained a common sense until now. Accordingly, further 

investigation of the physical meanings of all internal length scales in each regularization approach is 

still a matter of great urgency and significance. At last, the argument of Tejchman (1999) is favored 

in the present manuscript: “ the micropolar approach is more suitable, from a physical sense, for the 

modeling of shear zones in granular materials than other models that seek to capture strain 

localization in a proper manner (e.g., the nonlocal, high-order gradient, and viscous models), because 

it takes into account grains’ rotations and couple stresses during shearing (even though these remain 

negligible during homogeneous deformation)”, which has been experimentally validated.  
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1.5 Application of micropolar theory in geotechnical engineering 

1.5.1 Different polarized constitutive models and the applications  

Since the Cosserat brothers proposed their own theory in 1909, Cosserat theory has been widely 

adopted as a way to explain and solve various phenomena and problems related to microstructures. It 

has performed professional efficiency to reflect the micro size effect and great capability to 

reproduce strain localization phenomena. In this part, the applications of the Cosserat theory 

(micropolar theory) are summarized in Table 1-1 with particular emphasis on geotechnical 

engineering.  

Table 1-1 Summary of micropolar constitutive models and applications 

Publications Applications Constitutive models 

Cosserat elasticities  

(Mindlin, 1963, 1964; 

Sternberg and Muki, 1967; 

Cowin, 1969; Kulesh et al., 

2006; Randow et al., 2006) 

Studying various stress concentration problems 

including those around a hole, a crack tip, and near 

a concentrated force and dispersion of Rayleigh 

wave in wave propagation and the size effect in thin 

film 

Cosserat continuum 

elasticity

Muhlhaus et al. 

(Mühlhaus and Vardoulakis, 

1987; Mühlhaus, 1989; 

Pasternak and Mühlhaus, 

2001) 

Analyzing theoretically the thickness of shear band 

under plane strain condition; the influence of finite 

rotations of the blocks on the limit load was 

investigated 

Simple Von-Mises 

elastoplastic model 

developed by Vardoulakis;

continuum model for 

regular block structures

De Borst et al. 

(de Borst, 1990, 1991; de 

Borst and Sluys, 1991; de 

Borst, 1993) 

Mesh independency: infinite long shear layer; plane 

strain biaxial tests 

Von-Mises elastoplastic 

model; pressure dependent 

J2 flow model

Ehlers et Volk 

(Ehlers et al., 1997; Ehlers 

and Volk, 1997a, b, 1998) 

Shear band localization phenomena of footing acted 

on fluid-saturated elastoplastic porous solid 

materials and slope failure induced by an excavation 

process 

Hookean elasticity model 

for elastic domain and the 

single surface plastic yield 

criterion by Ehlers 

(1993a,1995) for ideal 

inelastic domain 

Adhikary et al. 

(Adhikary and Dyskin, 1997; 

Adhikary et al., 1999) 

Providing an accurate prediction of the 

load-deflection behavior of layered materials: 

flexural toppling failures of foliated rock slopes; 

bulking problem in a stratified rock mass; critical 

Euler buckling load for a package of non-interacting 

layers 

A model for layered 

geomaterials: state of slip 

(layer interface) is defined 

by a simple Coulomb slip 

model 
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Tejchman et al. 

(Tejchman and Wu, 1993; 

Tejchman and Bauer, 1996; 

Tejchman et al., 1999; 

Tejchman and Gudehus, 

2001; Tejchman, 2002; 

Tejchman and Niemunis, 

2006; Tejchman, 2008) 

Capturing the shear band in plane strain 

compression tests; monotonic shearing of an infinite 

layer; stripe foundation; earth pressure; direct and 

simple shear; advanced applications including 

sandpiles, direct symmetric cyclic shearing under 

constant normal stiffness condition, wall boundary 

conditions, deterministic and statistical size effects, 

non-coaxiality and stress-dilatancy rule and textural 

anisotropy. 

A polarized hypoplastic 

constitutive model; 

elastoplastic model 

proposed by Muhlhaus

Huang et al. 

(Huang et al., 2002; Huang 

and Bauer, 2003; Nübel and 

Huang, 2004; Huang et al., 

2005; Huang et al., 2014; 

Huang and Xu, 2015) 

Simulating plane coquette shear and biaxial tests; 

reproducing the strain localization in sand behind 

the retaining wall and under strip footing 

A polarized hypoplastic 

constitutive model

Alsaleh et al. 

(Alsaleh, 2004; Voyiadjis et 

al., 2005; Alsaleh et al., 

2006; Alshibli et al., 2006) 

Reproduce the strain localization phenomena on 

F-75 silica sand, coarse silica sand and two sizes of 

glass beads compressed under plane strain 

conditions (biaxial tests) 

The single hardening 

Lade’s constitutive model 

proposed by Lade et Nelson

Li et al. 

(Li and Tang, 2005; TANG 

and LI, 2007; Tang and Li, 

2008; Tang et al., 2013; Tang 

and Hu, 2017) 

Predicting the shear band and proving the mesh 

independency capabilities in the plane strain and 3D 

conditions: shear layer with infinite length; uniaxial 

compression of a square panel; progressive failure 

of slope, footing, excavation and retaining wall. In 

3D condition: studying the size effect by a micro 

cantilever beam and a micro rod (elastic) 

2D and 3D 

Pressure dependent 

Drucker-Prager type 

elastoplastic model

Liu et al. 

(Liu et al., 2007) 

Mesh independency: infinite long shear layer; strain 

localization in 3D specimen 

3D two phase Desai 

hierarchical model

Arslan et al. 

(Arslan and Sture, 2008b, a) 

Predicting the load behavior of a shallow footing 

and failure behavior of a slope as well as the size 

effect by footing tests 

Drucker–Prager type 

elastoplastic model

Riahi et al. 

(Riahi and Curran, 2009; 

Riahi and Curran, 2010) 

Predicting the deformation of layered structures: 

plate structures with various geometry (Cantilever, 

Rectangular, Circular) and boundary condition; 

excavation in layered rock 

3D layered model

based on plate theory

Manzari et al. 

(Manzari, 2004; Manzari and 

Dafalias, 2005; Manzari and 

Yonten, 2011) 

Several examples of failure analysis, such as a deep 

excavation, shallow foundation, and a retaining 

wall, were presented showing the regularization 

abilities of micropolar technique in overcoming the 

numerical difficulties in boundary value problems 

A critical state two-surface 

micropolar plasticity model 

for sands
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As shown in Table 1-1, Cosserat theory demonstrates extensive applicability, being introduced 

first into elastic continuum materials and then into elastoplastic ones. In micropolar elastic materials, 

rather than mimicking classical continuum theory, it is able to reflect the micro size effect shown in 

experiment tests such as stress concentration problems, dispersion of Rayleigh wave-in-wave 

propagation, and the size effect in thin film. For elastoplastic materials, it is mainly used as a 

regularization technique to alleviate mesh sensitivity problems when modeling strain localization 

using finite element method, especially in the post-failure regime. To reproduce and study the strain 

localization phenomena in laboratory tests or of geostructures’ failures in reality, where the material 

response is essentially inelastic, various elastoplastic micropolar models as well as hypoplastic 

micropolar models have been proposed and widely used as presented in the table above. Moreover, 

micropolar theory is also adopted to describe the strain localization phenomena in multiphase media. 

It is inevitable that the table cannot encompass all the micropolar constitutive models, but the 

majority of constitutive models being able to inspire readers have been listed.  

1.5.2 Internal length scale and micropolar shear modulus 

In elastic micropolar continuum approaches, analytical solutions that predict the size effect have 

been used to determine material constants in experiments. Huang et al. (2014) have illustrated the 

determination of micro–deformation-related parameters in inelastic micropolar theory. However, the 

determination of the additional parameters of micropolar constitutive models is still an open topic. 

Two additional key parameters are incorporated into micropolar continuum models for 2D 

problems in static loading analysis: internal characteristic length scale lc and micropolar shear 

modulus Gc. For the choice of Gc, it is widely accepted as proven that Gc can be set to about half the 

conventional shear modulus G (de Borst and Mühlhaus, 1991; de Borst and Sluys, 1991; de Borst, 

1993; Arslan and Sture, 2008b, a; Tang and Li, 2008; Kondo, 2010). Taking into account that the 

micropolar shear modulus influences the final results only very slightly, such as in the thickness of 

shear bands and the load-bearing capacity in biaxial tests, emphasis is laid on the effect of the 

internal length scale lc. 

Indeed, lc, reflecting the microstructure, significantly influences the effectiveness of 

regularization, as well as the final numerical results. The choice of the internal length scale is still an 
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open question and has been argued by de Borst (1993). In his article, he set lc as a random value, but 

lc depends on the shape and the size of the micro-element, as was also pointed out. Tang and Li 

(2008) proposed a range within which to consider lc reasonably.  In their opinion, the internal length 

scale lc must be no less than 1/100H, generally 1/100H < lc < 1/10H, where H is the concerned 

dimension of the structure (e.g., the height of a slope or width of a footing). Only in this condition 

the regularization role of the micropolar continuum model, as well as the accuracy of the attendant 

numerical results, can be guaranteed. In most cases, lc is regarded as the mean grain size d50 

(Tejchman et al., 1999; Alshibli et al., 2006; Arslan and Sture, 2008b). Alternatively, lc can also be 

identified as an equivalent radius of assembly of grains (Papanastasiou and Vardoulakis, 1989) or as 

being proportional to the microstructure length – the mean grain diameter d50 (Huang and Xu, 2015). 

It is questionable whether or not a fixed value of the material length scale is used to model 

strain localization phenomena through the whole process. With dilatancy and rearrangement of 

particles, a significant change in length scales is expected owing to the effect of the shape indices 

and the surface roughness of the particles. Accordingly, in contrast to the foregoing assumptions that 

lc is a random value or merely related to microstructure length, some also believe that internal length 

scale is affected by surface roughness index, sphericity index, and the like. 

Two simple formulations have been proposed to calculate the contact surface between two 

adjacent particles and the rotation arm length in the micropolar continuum model (Alsaleh, 2004; 

Voyiadjis et al., 2005), 
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where ls and la are the length of surface contact and arm of rotation, respectively. ISPH, IR, and Ra are 

sphericity index, roughness index, and mean surface roughness. 

Rub and Voyiadjis (2004) suggested an evolving equation of the average internal length that 

starts with an initial value and then decreases exponentially as a function of the total accumulated 

effective plastic strain , 
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where k0 is a constant and l0 is the initial length scale, which can be defined as 
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Based on the formulation in the previous equation, two other length scale evolving formulations 

have been suggested by Liu et al. (2011). One assumes that the evolution of the internal length scale 

depends on both the deviatoric and the rotational effective plastic strain, 
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and others consider a coupling of the deviatoric and the rotational components, 
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where  is the ratio between the deviatoric strains and the total strains, 
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and 
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in which k0 and are parameters that control the evolution rate of the length scale components. 

Then, Arslan and Sture (2008a) proposed a length scale equation intended to include the effects 

of micro-rotation, normal stress, and contact area, 
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in which G and K are the conventional shear modulus and the rotational stiffness modulus, 

respectively. is the relative rotation at contact, A denotes the contact area, and is the normal 

stress. 

Considering the crushing of grains within granular materials, an evolving formulation of the 

internal length scale regarded as the current mean grain size has been proposed by Tejchman (2010) 

in a micropolar hypoplastic constitutive model, 

  50 50 501 o ud B d Bd     (1.33) 
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in which 50
ud  is the ultimate mean grain diameter, calculated under the assumption that the grain 

size distribution tends to be fractal (Hardin, 1985), 50
od  denotes the initial mean grain diameter, and 

B is the current relative breakage index. 

From the preceding summary, the common sense of researchers is that the internal length scale 

depends on the mean grain diameter for particle materials and that the value may differ slightly for 

different problems (Aifantis, 1999). However, it must be noted that obtaining accurate values for the 

new parameters in these formulations is a difficult task. 

 

1.6 Conclusions 

This chapter summarized strain localization phenomena in large-scale structures as well as in tank 

models and specimens in laboratory tests, and then illustrated mechanisms of strain localization in 

detail. After that, it summarized theories and methods relating to the study of strain localization and 

reviewed the influences of various factors on shear band onset, thickness, and inclination. 

Various investigations on the strain localization phenomena by numerical methods were 

reviewed, such as DEM, FEM, among others. Their advantages and disadvantages were discussed. 

Considering the mesh dependency problems in modelling strain localization phenomena using the 

finite element method within the framework of classical continuum theory, several typical 

regularization approaches, like viscosity theory, nonlocal theory, gradient theory, and micropolar 

theory, were introduced naturally. The advantages and disadvantages of each regularization approach 

was symmetrically summarized and compared, helping us to gain a deep understanding of the 

differences between these approaches and to select an appropriate regularization method in different 

cases. Furthermore, emphases were laid on the micro polar theory, whose applications and the 

internal length scale parameter were summarized and discussed in detail. According to the review, 

the present thesis aims at investigating the progressive failure of granular material made structures. 

And the micropolar approach is used to overcome the convergence difficulties and mesh dependency 

problems when simulating strain localization phenomena by FEM.  
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Chapter 2 Finite Element Implementation of the Micropolar SIMSAND Model  

2.1 Introduction 

When subjected to high levels of stress, particles of granular materials inside strain localization 

zones will be forced to rearrange and deform with great intensity. The grains or aggregates of such 

materials will undergo extreme and irreversible rotational and translational deformations. Many 

researchers have supported the idea that particles’ rotations are most dominant at the failure or 

bifurcation point (Oda et al., 1997, 1998, 2002; Vardoulakis & Sulem, 1995). Accordingly, apart 

from the translations of grains, it is of great importance that grain rotations be brought into the 

formulations so to describe the realistic behavior of granular materials. Many constitutive models 

have been developed in the literature to describe the mechanical behavior of granular materials. 

However, most of the formulations of these models fit within the framework of classical continuum 

theory, and the finite element solutions suffer from serious mesh dependency problems when the 

strain localization phenomena are simulated. The main reason for mesh dependency is the lack of 

length scale parameter to reflect the internal micro-structure, and the partial differential governing 

equations will lose ellipticity in the post-bifurcation regime. As mentioned by Vardoulakis and Sulem 

(1995), the Cosserat theory (micropolar theory), proposed by the Cosserat brothers (1909), can be 

used to describe the strain localization phenomenon. Micropolar theory takes into account the micro 

rotations of grains and is able to relieve the mesh dependency problems in finite element analysis.  

In this chapter, the recently developed critical state–based elastoplastic sand model (SIMSAND) 

has been formulated under the framework of micropolar theory. Then, the numerical 

implementations and validations have been performed. At last, the regularization ability in dealing 

with the mesh dependency problems in finite element analysis of the micropolar SIMSAND model 

was demonstrated by simulating a biaxial test and a passive retaining wall. 
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2.2 Introduction of micropolar SIMSAND model 

2.2.1 Description of SIMSAND model 

Over the past few decades, many constitutive models have been developed for sand from linear 

elastic models and ideal plastic models to nonlinear models and even advanced critical state–based 

models (such as the NorSand model by Jefferies (1993), the Severn–Trent model by Gajo and Muir 

Wood (1999), the SANISAND model by Taiebat and Dafalias (2008), and micromechanical models 

by Chang and Hicher (2005) and Yin et al. (2010, 2014)). These advanced sand models have 

described the behavior of sand accurately. In this section, a different simple critical state–based 

nonlinear model (the SIMSAND model) would be introduced briefly. For more detailed information 

of SIMSAND model, the publication of Jin et al. (2016) and Wu et al. (2017) should be referred to.  

The constitutive relations are introduced as follows, with the total strain rate conventionally 

decomposed into the elastic part and the plastic part: 

 e p
ij ij ij        (2.1) 

The hypoelastic behavior is assumed to be isotropic with bulk modulus K or shear modulus G. 

The forms of these two moduli proposed by Richart et al. (1970) have been adopted, 
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which, if defined in the p'–q plane, produces 
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where K0, G0 are reference values of bulk modulus and shear modulus, respectively.  is an input 

parameter controlling the nonlinearity of the confining stress effect; e is the void ratio;  is Poisson’s 
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ratio; p' is the mean effective stress; and pat is the atmospheric pressure used as reference pressure 

(pat = 101.3 kPa). Shear modulus and bulk modulus can be related by Poisson’s ratio, 
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Thus the reference value of bulk modulus K and Poisson’s ratio  can be taken as the input 

parameters.  

The plastic strain is based on the shear sliding, 
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where g is the plastic potential function and dis the plastic multiplier. The yield surface for shear 

sliding can be expressed in a similar way to those proposed by many previous researchers (Vermeer, 

1978; Jefferies, 1993; Gajo and Wood, 1999; Yin et al., 2010), 
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in which f is the yield function, q is the deviatoric stress ( 23q J ), kp relates to the plastic shear 

modulus, Mp is the stress ratio corresponding to the peak strength and determined by the peak 

friction angle p (Mp = 6sin(p)/(3–sin(p))), and p
d  is the deviatoric plastic strain ( 2 3p

d ij ije e  ). 

The potential surface, accounting for contraction or dilation, which is also similar to those proposed 

by the aforementioned researchers, can be expressed as 
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where Ad is the stress–dilatancy parameter; Mpt = 6sin(pt)/(3–sin(pt)) can be calculated from the 

phase transformation friction angle pt. 

M, the slope of the critical state line in the p'–q plane, is expressed as M = 6sin(u)/(3–sin(u)). 

The peak friction angle p and the phase transformation friction angle pt are associated with the 

critical friction angle u (corresponding to the critical state line CSL in the p'–q plane in Figure 2-1) 
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and the critical void ratio ec (obtained from the critical state line CSL in the e–log p' plane in Figure 

2-1) as follows (Jin et al., 2016; Wu et al., 2017): 
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According to the critical state concept and experimental observations, a simple critical state line (Li 

and Wang, 1998) has been used to calculate the critical state void ratio ec, 
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where np and nd are model parameters, eref is the reference critical void ratio corresponding to pat, and 

is the slope of the CSL in the e–log p' plane. The simple form of the critical state line given by Eq. 

(2.11) is suitable for sand under a mean effective stress of no more than 1 MPa with very few particle 

breakages. 

From Eq. (2.10) and Figure 2-1, we can find that for loose sand with e > ec, the phase 

transformation stress ratio Mpt is bigger than M and the peak stress ratio Mp is smaller than M, which 

allows the loose sand to contract during deviatoric loading with a strain-hardening behavior; for 

dense sand with e < ec, the phase transformation stress ratio Mpt is smaller than M, and the peak 

stress ratio Mp is bigger than M, which allows the dense sand first to contract and then to dilate 

during deviatoric loading, with the peak strength followed by a softening behavior. For both loose 

and dense granular assemblies, when the stress state reaches the critical state line, the void ratio e 

becomes equal to the critical void ratio ec, after which zero dilation or contraction takes place. Thus 

the constitutive equations guarantee that stresses and void ratio simultaneously reach the critical state 

in the p'–q–e space. 

The plastic multiplier d can be calculated in a conventional way according to plasticity: 
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Based on the foregoing constitutive equations, the stress–strain relationship can be solved. 
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Figure 2-1 Principle of critical-state-based nonlinear hardening model for sand 

2.2.2 Extension to the micropolar SIMSAND model 

Classical constitutive models feature six components in stress and strain vectors for 

three-dimensional problems and four components for two-dimensional problems (e.g., plane strain 

problems) if not repeatedly counting mutual–equal shear stress components: 

 3D :
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 2D :

T
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T
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    

ε

σ
  (2.14) 

The simple critical state–based elastoplastic model just illustrated has been polarized to account 

for couple stresses and rotations of grains under plane strain condition by the augmentation of the 

strain and stress vectors. Herein, we revisit strain and stress vectors, as well as the elastic stiffness 

matrix De under plane strain condition, in the enhanced micropolar model: 

 
T
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where lc is the incorporated internal length scale parameter in the micropolar model, and Gc denotes 

the micropolar shear modulus.  

Compared with the initial SIMSAND model, the stress and strain invariants in the micropolar 

SIMSAND model have been modified to consider the couple curvatures and corresponding 

energetically conjugated couple stresses. According to de Borst et al. (1987, 1991, 1991), the strain 

and stress invariants can be formulated as 

 
1

2 2
1 2 3

p p p p p p p
d ij ij ij ji ij ij cb e e b e e b l              (2.18) 

 2
2 1 2 3ij ij ij ji ij ji cJ a s s a s s a m m l     (2.19) 

where p
ije  is the plastic deviatoric strain rate tensor, p

ij  is the plastic micro-curvature rate tensor, 

sij is the deviatoric stress tensor, and mij is the micro-moment tensor. The summation convention with 

respect to repeated indices has been adopted. Furthermore, the deviatoric stress q is updated by new 

stress invariant 23J . For numerical convenience, the choice a1 = a2 = 1/4, a3 = 1/2 and b1 = b2 = 1/3, 

b3 = 2/3 has been used in majority cases (de Borst, 1990, 1991; de Borst and Sluys, 1991). To arrive 

at a compact matrix–vector notation, the formulation of q is expressed as 

 
1

2
q  Tσ Pσ   (2.20) 

where P is called the plastic potential matrix (Li and Tang, 2005): 
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 
 
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P   (2.21) 

Similarly, if the equivalent plastic strain p
d  is expressed directly by the seven generalized strain 

components as the manner for calculating the second invariant of deviatoric stress q, then the 

equivalent plastic strain can be expressed in compact matrix–vector notation, 

  2

3
p

d 
Tp pε Q ε   (2.22) 

with the matrix Q defined as follows: 

 

2 / 3 1 / 3 1 / 3 0 0 0 0

1 / 3 2 / 3 1 / 3 0 0 0 0

1 / 3 1 / 3 2 / 3 0 0 0 0

0 0 0 1 / 2 1 / 2 0 0

0 0 0 1 / 2 1 / 2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

  
   
  
   
 
 
 
  

Q   (2.23) 

Notably, however, Muhlhaus and Vardoulakis (1987) have suggested that other combinations of 

the coefficients a1, a2, a3 and b1, b2, b3 in Eq. (2.18) and Eq. (2.19) might have more representative 

meanings for granular assemblies based on micromechanical considerations. 

As can be seen, augmenting a classical constitutive model to produce a micropolar model in a 

stress–strain level is not a complex task. The stress and strain vectors must simply be extended to 

consider the micromoments and microcurvatures, which also requires that stress and strain invariants 

be newly defined based on the foregoing equations. Note, however, that when the independent 

microrotation is constrained, all micro qualities are null values and the micropolar model is retrieved 

to a classical one. 
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2.2.3 Summary of model parameters 

The micropolar constitutive model features 12 parameters in total. Besides those parameters that can 

straightforwardly be given a meaningful value before fitting the experimental curves, such as 

Poisson’s ratio , the parameters in the constitutive model can be divided into four groups: (1) 

elasticity-related parameters: K0, , and ; (2) critical state–related parameters: u, eref, and ; (3) 

plasticity interlocking parameters: kp, Ad, np, and nd; and (4) the newly incorporated parameters in a 

micropolar constitutive model for 2D problems: lc and Gc.  

A typical value for Poisson’s ratio of 0.2 is usually assumed. The values of K0 and  chiefly 

control the isotropic compression curve, and the values of u, eref, ,kp, Ad, np, and nd chiefly control 

the triaxial shearing curves. Accordingly, the elasticity-related parameters K0, can be obtained 

based on an isotropic compression curve; to identify the critical state–related parameters u, eref, and 

, at least three set of triaxial tests with different confining pressures and different initial void ratios 

should be required; the plastic interlocking parameters kp, Ad, np, and nd can be determined by one 

triaxial drained test. The micropolar parameters lc and Gc chiefly control the thickness strain 

localization zones and the bearing capacity in specimens’ or structures’ post-failure regime. 

Consequently, the micropolar parameters may be determined by analyzing the thickness of shear 

bands such that results match the real experimental width. Unlike macro-scale material parameters, 

however, the micro-scale material parameter cannot be easily determined through experiment. Lakes 

(1995) proposed some experimental methods for elastic micropolar continuum. These experiments 

are quite complicated and work only for materials such as metal. For granular materials, no standard 

experiment exists that is suited to micropolar theory, nor any recognized definition of the length 

scale. 

In terms of the influence on the material behavior of these parameters, kp and np control the peak 

strength, Ad and nd control the dilatancy behavior, and u, eref, andcontrol the position of the 

critical state line in the q–p' plane and the e–log p' plane. Specifically, kp controls the initial slope of 

the curve ' p
dq p  ; in addition, the degradation rate of the stiffness at small strain levels is 

determined by the plastic shear modulus kp: a smaller value of kp gives a slower degradation of the 

global shear modulus; Ad is the stress dilatancy multiplier, which controls the magnitude of dilatancy; 
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nd controls the slope of the transformation line; u controls the slope of the critical state line in the q–

p' plane; and eref andcontrol the specific position and slope of the said line in the e–log p' plane. 

There are two ways of identifying the interlocking effect-related parameters kp, Ad, np, and nd : 

one is the conventional curve-fitting method, the success of which depends greatly on experience; 

the other is by means of an optimization method. Sometimes, optimization methods allow parameters 

to be found more quickly and effectively (Jin et al., 2016). 

In terms of the two additional incorporated parameters, which are identified as the internal 

length scale parameter lc and the micropolar shear modulus Gc in the model within the framework of 

micropolar theory for plane strain problems, the thickness of the shear band is commonly recognized 

as being decided primarily by the internal length scale; thus lc, reflecting the microstructure, is 

generally related to microstructures such as the mean grain size d50 or is linearly proportional to the 

same. The influence of micro-properties, such as the shape and surface roughness of the particles on 

the value of the internal length scale parameter lc, will not be considered in the present research. It 

has been widely accepted that Gc can be set to about half the conventional shear modulus G (de Borst 

and Mühlhaus, 1991; de Borst and Sluys, 1991; de Borst, 1993; Arslan and Sture, 2008b, a; Tang and 

Li, 2008). Taking into account that the micropolar shear modulus (when Gc ≥ 0.5G) has only a very 

slight influence on the final results, such as for shear band thickness and load carrying capacity in 

biaxial tests, the emphasis is put on the effect of the internal length scale lc. The value of lc has a 

considerable influence on the load–displacement curve, as well as the distribution of strain 

localization. A larger lc will result in more toughness in the post-peak regime as well as in a wider 

shear zone. The influence of lc can finally be observed and analyzed by simulating the strain 

localization phenomena using the finite element method when the rotational degree of freedom is 

taken into account.  
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2.3 Finite element implementation 

2.3.1 Formulations of UEL 

2.3.1.1 Introduction of UEL 

When using micropolar theory, an additional rotational degree of freedom, apart from the 

translational degrees of freedom for a 2D element, is activated in finite element analysis. For all the 

2D element types in ABAQUS, there are only two translational degrees of freedom, meaning that the 

user-defined element (UEL) subroutine, which provides the platform for advanced development, 

should be used to define a new element that satisfies the various requirements of different users. The 

advantages of implementing UEL in ABAQUS, instead of writing a complete analysis code, are 

obvious. Additionally, we can use the pre-processing and post-processing platforms of ABAQUS, 

maintaining and porting subroutines is much easier than doing the same for a complete finite element 

program. The programming language used for the user subroutines of ABAQUS can be FORTRAN, 

C, or C++. A UEL subroutine is just one of the various user subroutines, and a specific format of 

interface, as shown in Figure 2-2, exists in each subroutine to realize the data transferring and 

sharing between subroutines and the solvers of ABAQUS. Certain necessary and indispensable 

arrays must be defined. RHS contains the contributions of this element to the right-hand-side vectors 

of the overall system of equations—for most nonlinear analysis procedures, NRHS = 1 and RHS 

should contain the residual vector; AMATRX contains the contribution of this element to the Jacobian 

(stiffness) or other matrix of the overall system of equations; SVARS contains the values of the 

solution-dependent state variables associated with this element, and the number of such variables is 

NSVARS. At the end of the subroutine UEL, AMATRX and RHS must be updated and saved for 

further calculation. 
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Figure 2-2 Subroutine interface of UEL 

The programming of a UEL is more difficult and complex than that of a UMAT, which simply 

requires the description of the strain–stress relationship. Accordingly, this feature of ABAQUS is 

intended for advanced users only. Before programming a UEL subroutine, certain key characteristics 

of a user element must be defined, such as the number of nodes on the element, the number of 

coordinates at each node, the degrees of freedom active at each node, the number of element 

properties, and the number of solution-dependent state variables to be stored per element. 

Figure 2-3 presents a flowchart of a UEL, which illustrates the entire process of a UEL in detail. 

We can find that the process is completely the same with the finite element analysis within the 

framework of classical continuum mechanics theory. However, the element type, represented by 

shape functions, is defined by the user rather than the ones in ABAQUS. The cutting plane method to 

update stresses will be illustrated in the next section. Because the additional degree of 

freedom—rotational can be regarded as a specific and particular translational one, the micropolar 

theory is also referred to as the generalized continuum mechanics theory.  
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Figure 2-3 Flow chart of the UEL 

2.3.1.2 Derivations of a user defined element  

The finite element formulations, conducted in the updated Lagrangian frame, have been implemented 

into the commercial finite element tool ABAQUS via the UEL function. 

As with the introduction of micropolar theory aforementioned, there are three degrees of 

freedom for each node for the plane-strain element. To address the issue of full integration causing 

shear volumetric locking and reduced integration leading to hourglass of a four-node bilinear 

quadrilateral element, as shown in Figure 2-4, an eight-node biquadratic quadrilateral element was 

defined. And, reduced integration was used in the present study, which is suitable for nearly all plane 

strain conditions without any problem.  
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Figure 2-4 Element of 2D micropolar continuum: (a) 8-node plane element; (b) integration points 

Based on the interpolation approximation method, the displacements and rotations of an 

element can be calculated by the counterparts of each node, as demonstrated by 

  eu Nδ    (2.24) 

where u is the displacement (rotation) of the element, N is the interpolation function matrix, and eδ  

is the displacement vector of all nodes of the element. For the current 2D element 
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   
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N I I I I I I I I I   (2.26) 

The shape functions of the plane-strain eight-node isoparametric element were displayed as follows: 
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  (2.27) 

Then, the strain can be derived from the displacement, as in the classical continuum mechanics 

theory. The L matrix (defined in Appendix C) is used as a bridge of strain and displacement: 

   e eε Lu LΝδ Bδ   (2.28) 

B is named the strain matrix and written in blocked form by node number: 

  1 2 3 4 5 6 7 8B B B B B B B B B LN   (2.29) 

Thus, B is formulated as 
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When the strain has been obtained, the stress can be calculated based on the constitutive law; this 

will be discussed in detail in the next section. 

  ep ep eσ D ε D Bδ   (2.31) 

From this formula, we may discern that to calculate stress and strain vectors, the shape function N, as 

expressed in the natural coordinate system, must be transferred to the Cartesian coordinate system. 

The Jacobian matrix is introduced to realize the map between the current and previous configurations. 

The isoparametric element is used in this paper, which means that the nodes used to decide the 

element’s shape and displacement are the same, as are the shape functions. The element’s global 

coordinate in the plane can also be obtained from the shape functions and global coordinate of each 

node: 
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  (2.32) 

According to the partial differential rule, we know that 
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  (2.33) 

Eq. (2.33) can be also expressed as 
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after which the partial difference in Eq. (2.30) can be obtained, 
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where [J] is named the Jacobian matrix and formulated as 
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2.3.1.3 Discretization of the governing field equations  

According to the mechanics theory, the total potential energy of the structure, based on the virtual 

displacement principle in the two-dimensional plane strain problem, is expressed as 
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where t is the thickness of the 2D elastic element, f is the body force vector in the interior of the 

element, and T is the surface force vector exerted on the boundary. 

Combing Eq. (2.28) and Eq. (2.37), the total potential energy of the system is equal to the sum 

of the potential energy of each element. The total potential energy of the discrete model is expressed 

as 
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Based on the minimum potential energy principle and the randomness of the virtual displacement, 

the partial differential 0p


 eδ
 must be satisfied. Then the discretized governing field equations of 

finite element analysis are derived as 

 e eeK δ P   (2.39) 

where Ke is the element stiffness matrix and Pe is the element equivalent node load vector: 
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For the total system, the discretized equation is formulated as 

 K Pa   (2.42) 
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where K is the global stiffness matrix of the structure, a is the global node displacement array, and P 

is the global equivalent node force array of the total system. The derivations above are also suitable 

for the elastoplastic continuum. Here, K and P correspond to AMATRX and RHS in the interface of 

the user element subroutine, respectively, and a is U or DU. In ABAQUS, the Newton–Raphson 

technique is used to fulfill the static equilibrium equations of the nonlinear problems. Via the 

transition of the Jacobian matrix, the integration zones are changed from irregular to regular under 

natural coordinates. Because the integrations are too complex to be solved easily while attaining an 

accurate analytical solution, a numerical method, such as Gauss integration, is invariably adopted. 

Take the element stiffness matrix, for example: 
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In this case, m = n = 2, Hi, and Hj are the corresponding weight factors of each integration point.  

2.3.2 Integration algorithm-cutting plane method 

During the numerical implementation of micropolar SIMSAND model, the cutting plane algorithm 

(Ortiz and Simo, 1986) was adopted to update the stresses. All the internal state variables (such as 

void ratio, plastic work, and plastic strain) were also updated within the UEL using the explicit 

forward Euler integration scheme. According to the flow rule, the key factor for obtaining the plastic 

strains is the plastic multiplier d. The direct means of calculating d is explicit, which requires a 

very small loading step and much computing time. The algorithm presented here is semi-implicit, 

which can allow a more accurate solution with a larger loading step compared to the direct approach. 

The efficiency and effectiveness of calculation can therefore be improved using this algorithm. 

The cutting plane algorithm uses explicit elastic predictions that follow an iterative plastic 

correction loop. The framework of the algorithm is sufficiently general to be used with a wide variety 

of constitutive models with rate-independent plasticity, or viscoplasticity models. The formulation of 

the cutting plane algorithm considers strain-controlled loading, meaning that incremental strains are 

input quantities in this algorithm and incremental stresses are calculated from the incremental strains 

using the constitutive model. 

In general, the total strain  can be decomposed into elastic and plastic parts e andp, so that 
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  e pε ε ε   (2.44) 

First, the stresses are considered the function of the elastic strain vector e and the internal plastic 

variables Hk, where k is the number of the internal plastic state variables: 

  ,e
ij ij ij kH     (2.45) 

Then, based on the flow rule, the evolution of the plastic strain and state variables will be calculated 

per the formulations 

 
  


p
ij

ij

g
d d   (2.46) 

    ,
i i

dH d h H   (2.47) 

where g is the plastic potential function, hi (, H) represents the incremental direction of the state 

variable Hi, and H contains all the internal plastic state variables. 

Turning to the procedure of the cutting plane algorithm, the total incremental strain is first assumed 

to be completely elastic; thus the incremental plastic strains and the internal plastic state variables 

equal zero: 

 d d eε ε   (2.48) 

 ij ijkl kld D d    (2.49) 

 0d pε   (2.50) 

 0idH    (2.51) 

After the elastic prediction, stresses, strains, and other state variables (such as the void ratio) should 

be updated: 

 ij ij ijd      (2.52) 

 ij ij ijd      (2.53) 

Furthermore, the position of the new stress state, relative to the initial yield surface, is checked by 

calculating the yield function f. The value of the function is checked against the yield surface error 

tolerance FTOL, where FTOL is a small positive number (e.g., 1E-7). If the stress state is within the 

yield surface, or sufficiently close to it that the yield function is less than or equal to FTOL, then the 
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increment is accepted as totally elastic and the algorithm is complete. However, if the new stress 

state exceeds the boundary of the yield surface, the algorithm enters into an iterative plastic 

correction loop as shown in Figure 2-5. The process by which plastic correction is made when 

plasticity occurs is clearly displayed in Figure 2-5. As in the figure, the elastic prediction is first done 

to obtain a new stress state i=0, which exceeds the initial yield surface, where the superscript i 

counts for the iteration of the loop. The yield function fi=0, which gives the distance between the 

stress state and the previous yield surface, is greater than FTOL, causing the algorithm to enter the 

plastic correction loop. After one iteration of the correction loop, the stress is decreased to i=1 and 

the plastic variables Hi=0 are adjusted, causing the yield surface to kinematically harden and move 

toward the current stress state. These adjustments work in harmony to decrease the value of the yield 

function. If the yield function fi=1 ≥FTOL, the next iteration should be made. After the second 

iteration in this illustration, fi=2 is less than FTOL and the iteration is complete. 

 

Figure 2-5 Illustration of correction phase of cutting plane algorithm 

During the plastic phase, the equations governing the plastic correction loop are as follows: 

 p
ij ijkl kld D d     (2.54) 

 0d d d  e pε ε ε   (2.55) 
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g
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 i idH d h    (2.57) 

The target outcome is that the stress state must be corrected to return into the domain of the 

yield surface based on current i and fi, so that the value of the new yield function satisfies fi+1 = 0. 

If the yield function is expanded to a Taylor series, in terms of the current stress and internal plastic 

state variables, ignoring the high-order items: 

    1 1 1H H
i i

i i i i i i
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  (2.58) 

This equation can be also written as follows: 
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  (2.59) 

Combining Eq. (2.59), Eq. (2.54), Eq. (2.56), and Eq. (2.57), d can be calculated as follows: 
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  (2.60) 

Finally, the stresses and internal plastic state variables are corrected based on the following 

equations: 

 1
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ij ij ijkl
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g
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
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    (2.61) 

 1i i
iH H d h      (2.62) 

Then the updated stresses are used to check the yield function once more, and the plastic correction 

loop stops until the value of the yield function satisfies fi=1 ≤FTOL. 

The procedure of the algorithm is summarized in Figure 2-6:
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Figure 2-6 Flow chart of iteration procedure of the cutting plane algorithm 

For SIMSAND model, the original constitutive model has been described in Section 2.2.1, and 

its extended model within the framework of micropolar theory has also been introduced in Section 

2.2.2. The following derivations are simply used to calculate the plastic multiplier of the micropolar 

SIMSAND model, per Eq. (2.60), within the framework of micropolar theory. The plastic multiplier 

of the micropolar critical state–based model is expressed as 
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where f is the yield function expressed in Eq. (2.8), and Dijkl is the elastic stiffness matrix expressed 

in Eq. (2.63). Other partial derivatives are derived as follows: 
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Based on all the foregoing expressions, the micropolar critical state–based model can be solved via 

the cutting plane algorithm with high efficiency. 

2.3.3 Numerical validations 

The numerical element test is a necessary process for ensuring the correctness of the implemented 

user subroutine. Therefore, the simulated results from a UEL should be verified by those counterparts 

obtained from the original integration point program (IPP), whose constitutive law is defined at the 

stress–strain level. The results from the stress–strain level IPP are assumed to be correct and 

considered as the objective ones by default. In fact, before validating the UEL program, the 

correctness of UMAT (less advanced than UEL) has been validated, which can be found in Appendix 

C. Bearing in mind that the UEL is a two-dimensional type, element tests are confined to a domain of 

plane strain condition. At the strain-stress level, the specimen is ideally maintained in a state of 

homogeneity (with no strain localization). In this condition, the micropolar approach will have no 

specific influence on the simulated results from the UEL, compared with those results from the IPP 

that are under the framework of classical continuum theory. That is to say, the micropolar theory 



 

74 

 

does not offer any advantages in the homogeneous field, in which there is no rotation of individual 

grains.  

For validation, biaxial drained and undrained tests for both dense and loose Toyoura sand were 

simulated by an IPP and a UEL, with model parameters referred to (Jin et al., 2016) and (Wu et al., 

2017). There are two steps for biaxial tests, the first step is isotropic compression, and the second one 

is the shear loading. For drained test, shear loading is applied by controlling the displacement of the 

top side of the specimen, while keeping the confining pressure constant. Differently, for undrained 

tests, the specimen volume is kept constant by controlling the axial and lateral strain at the same time 

in the second shear loading step. The comparisons of the simulations between IPP and UEL are 

shown in Figure 2-7 and Figure 2-8, from which it can be found that the simulated results produced 

by UEL are absolutely consistent with those from IPP, thus amply verifying the correctness of the 

UEL implementation. In all the figures below, each subfigure denotes different relations: (a) axial 

strain versus deviatoric stress, (b) mean effective stress versus deviatoric stress, (c) axial strain 

versus void ratio, (d) mean effective stress versus deviatoric stress. It should be noted that the step 

size greatly affects the final results, which is to say that a smaller step size will yield a more accurate 

solution.  
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Figure 2-7 Comparisons between IPP and UEL in simulating biaxial drained tests  

 

Figure 2-8 Comparisons between IPP and UEL in simulating biaxial undrained tests 
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2.4 Verification of the micropolar model with plane strain tests results 

A series of biaxial tests have been conducted on medium dense and dense F-75 Ottawa sand (see 

Appendix E) under low and high confining pressure conditions to investigate the effects of specimen 

density, confining pressure, and sand grain size and shape on the constitutive and stability behavior 

of granular materials (Alshibli and Sture, 2000). The micropolar model was used to predict the 

stress-strain relationship of F-75 silica sand under plane strain condition. Material parameters, which 

are listed in Appendix E at the end of the manuscript, have been calibrated with an optimization 

technique by fitting the experimental data of an isotropic compression test as well as a series of 

triaxial tests under different confining pressures. It must be noted that on the basis of the calibrated 

parameters in Appendix E, the parameters used in simulating the biaxial tests have been slightly 

modified a little as may be found a larger critical friction angle u listed in Table 2-1 compared to 

Table E-1. Some evidences could support this difference in the findings of Alshibli et al. (2003), in 

which the comparisons between principal stress ratio versus axial strain of conventional triaxial 

compression and plane strain experiments indicate that the peak stress value and the residual stress of 

plane strain experiments are slightly higher than those of the conventional triaxial compression 

experiments. From a mathematical point of view, the slightly higher value of the peak and residual 

stress can be explained by the fact that for different loading conditions with different Lode angles 

can result in the differences in the critical friction angle in the constitutive law. What’s more, the 

restrained platen end of the specimens in the biaxial tests can also lead to a higher residual strength 

(Alshibli et al., 2003). For the two incorporated micropolar parameters, the internal length scale 

parameter lc was set to be identical to the mean grain size d50 (0.22 mm) of F-75 sand and the 

micropolar shear modulus Gc was set to be half of the classical shear modulus G.  

Table 2-1 Material parameters used to simulating the biaxial tests 

Parameters K0  u eref  kp Ad np nd

Values 60 0.63 38.5 0.776 0.015 0.004 0.4 1 2

Referring to the publication of Alshibli and Sture (2000), experiments on dry specimens with 

dimensions of 150 mm in height and 80 mm in width under drained plane strain conditions were 

conducted. In the present study, the F-75 sand was chosen as the objective experimental data, i.e. 
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medium dense with initial void ratio of 0.629 (Dr = 55%) under low confining pressure (15 kPa), 

medium dense with initial void ratio of 0.655 (Dr = 47%) under high confining pressure (100 kPa), 

very dense with initial void ratio of 0.495 (Dr = 97%) under low confining pressure (15 kPa), and 

very dense with initial void ratio of 0.527 (Dr = 87%) under high confining pressure (100 kPa). With 

a constant confining pressure applied to the specimens using a cell pressure reservoir, a constant 

axial displacement rate was applied on the specimens. The bottom end platen was restrained from 

movement and the top end platen was rigidly connected to the loading ram. During the testing 

process, the specimen’s deformation was monitored by noting the displacements of the grid 

imprinted on the membrane surface covering the specimen. In finite element simulations, in order to 

develop a single shear band which was the case in most of the experimental tests, the bottom of the 

specimen was allowed to slide in the lateral direction, and an imperfect element with a relative larger 

initial void ratio was set at the left top of the specimen to trigger the onset of strain localization.  

As we know that significant grain rotations occur inside the shear band, consequently, the shear 

bands represented by the independent micro rotations or rearrangements of the simulated results 

from the micropolar model were compared with those represented by deformation from the 

experimental tests. Figure 2-9 shows a shear band example of the experimental test and numerical 

simulation for very dense sand under high confining pressure at axial strain of 10%, which illustrates 

that the finite element result is in good agreement with the laboratory test, and the micropolar model is 

able to capture the realistic shear band pattern no matter the shear band thickness or the orientation of 

localization. Figure 2-10 and Figure 2-11 present the comparisons between the predicted and 

experimental data in biaxial tests for F-75 sand, which shows that the predicted curves of the 

principal stress ratio versus axial strain agree fairly well with the experimental data while the 

volumetric strains are poorly predicted. 
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Figure 2-9 Comparison between experimental and simulated shear band for very dense sand under 100 kPa 

confining pressure at 10% axial strain: (a) deformation in experimental biaxial test; (b) grain rotations by the 

micropolar model  
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Figure 2-10 Comparisons between the simulated solutions and experimental data for medium dense F-75 sand: (a) 

axial strain versus principle stress ratio; (b) axial strain versus volumetric strain; 
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Figure 2-11 Comparisons between the simulated solutions and experimental data for very dense F-75 sand: (a) axial 

strain versus principle stress ratio; (b) axial strain versus volumetric strain; 

2.5 Numerical simulations of shear bands in biaxial tests 

Admittedly, the solutions to strain localization caused by softening based on classical continuum 

mechanics may have congenital numerical or analytical technical problems and suffer from ill-posed 

mathematics. As we know the incorporated micropolar approach is mainly used to overcome 

convergence difficulties and deal with the mesh dependency problems in finite element analysis 
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when the strain localization phenomena occur, the regularization efficiency of the polarized 

SIMSAND model will be analyzed in this section.  

The FE simulations of the biaxial test using the micropolar SIMSAND model have been 

compared with those from the classical SIMSAND model. Constitutive parameters referred to the 

ones of Ottawa sand, which have been calibrated in the Appendix E at the end of the manuscript. We 

considered a dry, dense specimen with a width of 10 cm, a height of 20 cm, and a unit thickness (in 

2D condition, it is 1m by default). In the test, which featured two steps, mixed control was adopted. 

The first step was isotropic compression with a confining pressure of 100 kPa, and the second was 

shear loading by controlling the displacement of the top surface (up to a total axial strain of 5%). To 

ease the triggering of the strain localization, the lateral deformations of the top and bottom surfaces 

of the specimen were constrained. Four different mesh sizes, mesh 10×20, mesh 15×30, mesh 20×40 

and mesh 30×60, were used to investigate the mesh sensitivity. The expression mesh 10×20 indicates 

that the width and height of the specimen were uniformly divided by 10 and 20 elements, 

respectively. And the other expressions represent the corresponding discretizations.  

2.5.1 Mesh dependency of the simulated results by classical SIMSAND model 

2.5.1.1 Shear bands and mechanical response 

First the simulations were conducted using the classical SIMSAND model. Shear bands in current 

configuration, identified by the equivalent plastic strain distribution of four different discretizations, 

are shown in Figure 2-12, and the load versus displacement curves of four different mesh sizes are 

plotted in Figure 2-13. From the shear band contours and the load–displacement curves, it can be 

observed that the calculations for the mesh 10×20 and mesh 15×30 are completely finished. However, 

for the mesh 20×40, the calculation stops just after the peak loading, and—more seriously—it does 

not become convergent at the peak loading for the mesh 30×60. The reason is that the occurrence of 

strain-softening leads to a localization of strain into a single finite element no matter how small the 

element is. Thus, the width of the strain-localization region and the energy consumed by failure due 

to strain softening converge to zero as the element size is decreased to zero, which is an unrealistic 

feature of local continuum and not representative of real materials(Bažant et al., 1984). For refined 
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meshes, the localized deformation is relative large, in which the acoustic tensors of many gauss 

points become singular resulting in the difficulty of convergent or pathological solutions. For the 

fully formed shear bands in mesh 10×20 and mesh 15×30 in Figure 2-12, we can see that the shear 

band thickness is dependent on the mesh size, that the coarser the element size, the thicker the shear 

band will be. In Figure 2-13, the load peak of the mesh 10×20 (coarse mesh) is slightly higher and 

more delayed than the others’ (fine mesh). Additionally, the specimen displays more stiff behaviors 

in the softening regime of a coarse mesh than in a fine mesh. From the plastic strain contour of mesh 

30×60 and the green curve in the load–displacement plane, it can be seen that the strain localization 

occurs just before the peak loading, which coincides with the experimental observations of Desrues 

and Viggiani (2004). 

 

Figure 2-12 Shear bands of four different mesh sizes using the classical model: (a) mesh 10×20; (b) mesh 15×30; (c) 

mesh 20×40; (d) mesh 30×60 

 

Figure 2-13 Load–displacement of four different mesh sizes using the classical model 
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2.5.1.2 Shear band inclination 

According to the studies in the past, when it came to the investigations of the mesh dependency 

problems, many of the discussions were concentrated solely on shear band thickness and strength 

capacity in the post-peak regime, whereas shear band orientations have been rarely studied. In terms 

of shear band patterns, the present study considers not only the thickness of the band but also its 

orientation. Shear band orientation is obtained by measuring the angle between the centerline of the 

intense strain-localized region and the horizontal principal stress (under original configuration). The 

centerline can be explained as a sliding surface in experiments; the shear band orientations of three 

different mesh sizes are shown in Figure 2-14 (i.e., 1, 2, and 3). Considering that the calculation of 

Mesh 30×60 did not converge in the early stage, the other three shear band orientations were 

measured, respectively, as 1 = 52.69°, 2 = 57.65°, and 3 = 60.15°. Thus it may be discerned that 

the finer the mesh, the larger the shear band inclination angle.  

 

Figure 2-14 Shear band orientation of different meshes (a) mesh 10×20 1=52.69°; (b) mesh 15×30 2=57.65°; (c) 

mesh 20×40 3=60.15° 

From the contours in Figure 2-12 and Figure 2-14, it can be seen that not only shear band 

thickness but also shear band orientation is dependent on the mesh size. As a result, some 

conclusions about the mesh dependency within the framework of classical continuum theory can be 

obtained from the simulated results. First, when the specimen is refined, the acoustic tensors of some 

localized elements will become singular upon the occurrence of strain localization, resulting in the 
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difficulty of convergence. Second, the patterns of the shear band, including thickness and orientation, 

are significantly dependent on the mesh size. Third, load carrying capacity relies on the mesh size, 

especially in the post-peak regime. 

 

2.5.2 Mesh independency of the simulated results by micropolar SIMSAND model 

2.5.2.1 Shear bands and mechanical response 

To demonstrate the regularization capability of the micropolar technique, the same simulations of 

biaxial tests were conducted again with the micropolar SIMSAND model. The shear bands, 

identified by the plastic strain, of four different mesh sizes are displayed in Figure 2-15. In a 

departure from the calculations within the framework of classical continuum theory, all four 

simulations could be completely finished without any numerical convergence problem. And, the 

mesh independency of shear band thickness for the four different mesh sizes can be easily observed. 

Load versus displacement curves of the four discretizations are presented in Figure 2-16, showing 

that the mesh dependency problems have been significantly relieved. Although the pink curve of 

Mesh 10×20 is a little stiffer than the other three curves in the softening regime, the load–

displacement curves of the other three fine meshes coincide with each other absolutely. It is worth 

noting that the difference of the curves in the load–displacement plane can be used to precisely 

evaluate the degree of mesh dependency. 

 

Figure 2-15 Shear bands of four different mesh sizes using the micropolar model: (a) mesh 10×20; (b) mesh 15×30; 

(c) mesh 20×40; (d) mesh 30×60 
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Figure 2-16 Load–displacement of four different mesh sizes based on micropolar model 

2.5.2.2 Shear band orientation  

Figure 2-17 measures the shear band–inclined angle of the four different meshes, with the shear band 

inclination of mesh 10×20 at 1 = 53.10°—only slightly smaller than the orientations of the other 

three meshes. The shear band orientations of the three fine meshes have been proven to be the same: 

2 = 3 = 4 = 53.22°. Therefore, the micropolar SIMSAND model has succeeded in significantly 

relieving the mesh dependency of shear band orientation. 
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Figure 2-17 Shear band orientation of different mesh: (a) mesh 10×20 1=53.10°; (b) mesh 15×30 2=53.22°; (c) 

mesh 20×40 3=53.22°; (d) mesh 30×60 4=53.22° 

To conclude, being more advanced than the classical constitutive model, the micropolar 

SIMSAND model shows a good convergence property and significantly alleviates the mesh 

dependency problems.  

2.6 Application of the micropolar model in simulating retaining wall 

Earth pressure on retaining walls is one of the soil mechanics classical problems. In this section, a 

small scale rigid retaining wall under passive condition was considered. As shown in Figure 2-18, a 

two dimensional sand block in a rectangular rigid box with the dimension of 200×100 mm is selected 

to be the model, and the interaction between the sand and the box is smooth, from which the 

boundary conditions can be clearly illustrated. The height of the wall is of 50 mm which moves 
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horizontally towards the soil mass, and the contact between the wall and the soil behind the wall is 

assumed to be perfectly adhesive.   

 
Figure 2-18 A small scale retaining wall model in passive condition 

In order to illustrate the regularization effectiveness of the micropolar model to contribute to the 

mesh independency in simulating strain localization problems in numerical analysis with finite 

element method, three different element sizes, i.e. mesh 20×10, mesh 28×14, and mesh 40×20, were 

used to represent the model. The parameters were referred to those calibrated in Appendix E. The 

sand behind the wall was very dense with a relative density of 97%, and a unit density of 20 kg/m3, 

moreover, a downward centrifugal acceleration 10g has been also considered. 

2.6.1 Mesh dependency of the simulated results by classical SIMSAND model 

First, the simulations were conducted by the classical SIMSAND model, the simulated results are 

presented in Figure 2-19 to Figure 2-22. From the deformed configurations in Figure 2-19, it can be 

seen that the shear band thickness is significantly affected by the element size, the larger the element 

sizes is, the narrower the shear band thickness will be. As a result, a great distortion occurs for the 

fine mesh 40×20. The shear bands identified by the equivalent plastic strain and the void ratio in 

Figure 2-20 and Figure 2-21 are also found to be mesh dependent. Figure 2-22 shows the mesh 

dependency of the load-displacement curves for different mesh sizes, which illustrates that, with a 

finer mesh, the loading peak is reached with a smaller horizontal displacement, while the coarser 

mesh has a higher residual bearing strength.  
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Figure 2-19 The deformation of different meshes by classical model: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 

40×20; 
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Figure 2-20 The equivalent plastic strain for different meshes by classical model: (a) mesh 20×10; (b) mesh 28×14; 

(c) mesh 40×20; 

 

Figure 2-21 The void ratio for different meshes by micropolar model: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 

40×20; 
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Figure 2-22 Passive load-displacement curves of the retaining wall from classical model 

2.6.2 Mesh independency of the simulated results by micropolar SIMSAND model 

Then, the simulations were conducted by the micropolar SIMSAND model. The numerical results 

are presented in Figure 2-23 to Figure 2-26. Different from the results with the classical model, the 

deformations obtained by the micropolar model in Figure 2-23 are very uniform and smooth 

regardless of the element size, because the shear band thickness is controlled by the internal length 

scale and not by the element size. Similarly, the shear bands obtained with different mesh sizes and 

identified by the equivalent plastic strain in Figure 2-24 and the void ratio in Figure 2-25 are almost 

the same. Consequently, the mesh dependency problems of the load-displacement curves have been 

significantly reduced by the micropolar model as shown in Figure 2-26.  

By comparing the numerical results obtained by the classical SIMSAND model with those by 

the polarized SIMSAND model, the regularization effectiveness of the micropolar theory in 

alleviating the mesh dependency problems are again verified. 
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Figure 2-23 The deformation of different meshes by micropolar model: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 

40×20; 
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Figure 2-24 The equivalent plastic strain for different meshes by micropolar model: (a) mesh 20×10; (b) mesh 

28×14; (c) mesh 40×20; 

 

Figure 2-25 The void ratio for different meshes by micropolar model: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 

40×20; 
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Figure 2-26 Passive load-displacement curves of the retaining wall from micropolar model 

 

2.7 Conclusions 

In this chapter, the critical state–based elastoplastic model for sand (SIMSAND model) has been 

enhanced within the framework of micropolar theory. The FE implementation process of the 

micropolar SIMSAND model via the user-defined interface of ABAQUS was illustrated in detail. 

Moreover, the efficiency of the cutting plane method to update stress was also clearly demonstrated. 

Then, the validation at the single element level was performed with both loose and dense Toyoura 

sand. Moreover, the micropolar model was used to fit the experimental data in biaxial tests 

conducted by Alshibli and Sture (2000) with loose and dense F-75 sand. At last, by simulating the 

shear bands in a biaxial test as well as in a passive retaining wall with Ottawa sand, the 

regularization effectiveness of the micropolar approach has been proven, showing that not only the 

bearing capacity but also the shear band patterns were independent of the element mesh size. 
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Chapter 3 Numerical Analysis of Shear Band  

3.1 Introduction 

In this chapter, the shear band in a micropolar continuum is further discussed in terms of the onset, 

thickness and inclination, etc. For the purposes of validation, shear band thickness was also 

compared with the experimental outcomes. As a regularization approach, an effective regularization 

ratio of the internal length scale to element size in FE analysis was proposed and discussed, with 

which the mesh dependency problems could be removed absolutely. In the past, a micropolar Lade’s 

single hardening constitutive model (Alshibli et al., 2006), as well as a hypoplastic model within the 

framework of micropolar theory (Tejchman et al., 1999), have been used to discuss the influence of 

initial void ratio, pressure level, and mean grain size on shear band. However, the critical state–based 

type models for granular materials have rarely been enhanced by the micropolar model for the 

analysis of shear band. 

Therefore, the polarized critical state–based model—micropolar SIMSAND model—was 

adopted herein to conduct the influence analysis of different factors on shear band. Based on the 

numerical simulations of strain localization in biaxial tests, the effects of several factors, e.g. internal 

length, confining pressure, initial void ratio, etc., on the onset and patterns of shear bands have been 

discussed. In addition, for the specific micropolar SIMSAND model, the influences of three key 

model parameters, i.e. the critical friction angle u, the strength parameter np, and the deformation 

parameter nd, on the shear band have also been analyzed. Besides the influences on the shear band 

thickness and the bearing capacity, the focus was also on the effect to the regularization effectiveness 

ratio proposed in this chapter. 

3.2 Numerical investigation of shear band by micropolar approach  

3.2.1 Mechanical response 

In the last chapter we have shown that the mesh dependency problems could be overcome by the 

micropolar SIMSAND model. However, the comparisons between the mechanical response of 
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classical SIMSAND model and micropolar SIMSAND model have not been discussed. Therefore, to 

clearly identify the differences, the load–displacement curves from the classical and micropolar 

models are plotted in the same plane as shown in Figure 3-1. Being more advanced than the classical 

constitutive model, its micropolar counterpart shows a good convergence property and significantly 

alleviates the mesh dependency. Moreover, the simulations from the polarized model have a higher 

and more delayed peak load than those from the classical model, showing stiffer characteristics after 

being polarized in the softening regime. Certainly, the slight difference of Mesh 10×20 is caused by 

its mesh being too coarse. Thus, it is believed that element size may affect the regularization 

efficiency. Consequently, the regularization effectiveness related to the internal length scale and 

mesh size will be discussed in detail in the following section. 

 

Figure 3-1 Comparisons of load–displacement curves of four different mesh sizes between classical model and 

micropolar model 

3.2.2 Shear band inclination 

The micropolar SIMSAND model has succeeded in significantly relieving the mesh dependency of 

shear band orientation, with the shear band inclination of mesh 10×20 at 1 = 53.10°, other three fine 

meshes have been proven to be the same: 2 = 3 = 4 = 53.22°. Furthermore, the shear band 

orientation was quantitatively studied in this section. 
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As shown in Figure 3-2, the mobilized dilatancy angle  was defined by Muhlhaus and 

Vardoulakis (1987) based on biaxial tests. In the plane strain condition, v = 12 and  = 12. 

Thus, the mobilized dilatancy angle can be expressed as 

 arcsin( )    (3.1) 

 

Figure 3-2 Volumetric strain versus shear strain 

Based on this definition, the dilatancy angle inside the shear band in the present simulations has been 

approximately calculated:  = 16.7°. In Chapter 1, Mohr–Coulomb, Roscoe, and Arthur’s 

estimations for shear band inclination were defined: 

 45 71
2C

       (3.2) 

 45 53.4
2R

       (3.3) 

 
+

45 + =57.9
2A

       (3.4) 

It may be observed that the average measured shear band orientation  = 53.2°, with an initial 

relative density of 100% in the simulations by the micropolar SIMSAND model, is very close to 

Roscoe’s estimation: 45°+∕2 = 53.4°, rather than Mohr–Coulomb’s estimation of 71° and Arthur’s 

estimation of 62.2°.  

Because the peak frictional angle and dilatancy angle are closely related to the initial density, 

some other simulations, with a different initial density, should be performed to confirm the finding. 

The specimen has also been set to the initial void ratios of 0.52, 0.55, 0.58, and 0.65, which 

correspond to initial relative densities of 87%, 78%, 68%, and 46%, respectively. The measured 

shear band angles and predicted angles from different simulations were listed in Table 3-1.  
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Table 3-1 shear band inclinations with different initial density 

Dr [%] º º º C º º R º 

100 53.2 52 16.7 71 62.2 53.4 

87 51.4 50 12.4 70 60.6 51.2 

78 50.5 48 9.1 69 59.3 49.5 

68 48.2 47 6.8 68.5 58.5 48.4 

46 / 44 0 67 56 45 

For the material having a relatively low density, no clear shear band can be found by the 

micropolar continuum. Based on the table, it may be discerned that for the dense material, all the shear 

bands by the micropolar continuum are close to Roscoe’s estimation, as well as that the denser the 

material, the steeper the shear band inclination—consistent with the experimental conclusion of 

Alshibli et al. (2000). However, it should also be noted that the measured shear band inclination is 

extremely sensitive to boundary conditions (Vardoulakis, 1978). 

3.2.3 Shear band thickness and shear band identifications 

To measure an accurate shear band thickness, the equivalent plastic strain (a measure of the amount 

of permanent strain in an engineering body, which is calculated from the component plastic strain as 

defined as the equivalent stress/strain. In current study, the term plastic strain always means the 

equivalent plastic strain) along a path perpendicular to the shear band orientation should be extracted 

and recorded. For simplification, the horizontal red line through the specimen center in Figure 3-3 

was selected as the reference direction for all the simulations. According to Figure 3-3 (a), the 

reference direction and the shear band orientation are marked, and in Figure 3-3 (b), the thickness of 

shear band can be calculated: TSB=l·sin(). In this way, the shear band thickness of different 

simulations can easily be compared. 
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Figure 3-3 Identification of shear band thickness by equivalent plastic strain: (a) selected path and shear band 

orientation; (b) calculation of the shear band thickness 

As has been demonstrated, in addition to equivalent plastic strain, other state variables, such as 

void ratio, axial strain, microrotations, and microcurvatures, can be also extracted and recorded to 

represent shear band. To verify this finding, these related variables have been recorded from the same 

simulated result (mesh 30×60, lc = 2 mm). For purposes of comparison at the same scale, all 

variables have been normalized by their maximum as shown in Figure 3-4, which indicates that these 

variables tend to be constants outside the shear band, with the shear bands measured by these five 

variables being approximately the same. Accordingly, it is certain that these variables can be used to 

identify shear band distribution. The distributions of void ratio, equivalent plastic strain, and axial 

strain are bell-shaped. The peak values of plastic strain and axial strain located in the middle of shear 

band are caused because the largest deformation gradients occur in the middle of the shear band and 

gradually decrease outward. Excessive strain localization is caused chiefly by significant 

rearrangement and rotations of particles, which results in dilatancy inside the shear band. As a result, 

the void ratio in the middle of shear band is the largest. Considering that microcurvatures are entirely 

caused by microrotations, the distribution of curvatures is consistent with the distribution of particles’ 

rotations, and the rotations transform from clockwise to counterclockwise at the centerline, which 

can thus be explained as a slide line. 



 

99 

 

 

Figure 3-4 Shear band thickness identified by different variables 

The equivalent plastic strain has been adopted to identify the shear band orientation and 

thickness. Nübel and Huang (2004) defined the shear band domain by using a criterion that the 

normalized plastic strain p/pmax should exceed 0.6. However, the criterion has been redefined in 

the present study by comparing the shear band contours and the values of equivalent plastic strain 

along the selected path. Through the benchmark, it was suggested that the normalized plastic strain 

p/pmax being larger than 0.5 be more appropriate to identify shear band as in Figure 3-5. 

From the four normalized shear bands identified by plastic strain shown in Figure 3-5, it can be 

found that the four curves coincide with each other absolutely, confirming the regularization ability 

of micropolar theory in dealing with the mesh dependency problems. With the plastic strain 

distribution and shear band orientation, shear band thickness can be calculated. Accordingly, the 

shear band thickness in the foregoing simulations is TSB = 10l·sin() = 2.33·sin(53.22°) = 1.8 cm. 
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Figure 3-5 Normalized shear band thickness of four different mesh sizes 

3.2.4 Shear band evolution 

The evolution process of a shear band is shown in Figure 3-6. With the development of axial strain 

from 4% to 5%, the shear band becomes more and more obvious. However, it should be noticed that 

even though the plastic strain inside shear band increases with the development of axial strain, the 

thickness of shear band has remained constant during the whole evolution process. This indicates 

that once the shear band fully forms, its thickness remains constant from beginning to end. 

 

Figure 3-6 Evolution of a shear band 
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3.2.5 Influence of internal length on the simulated results 

As has been illustrated in chapter one, no matter which regularization method is adopted, at least one 

explicit or implicit internal length scale parameters must be incorporated into the constitutive model. 

The incorporation of the internal length scale in the micropolar SIMSAND model indeed relieves the 

mesh dependency problems. Therefore, the discussions about the internal length scale are of 

significant importance. As a result, four different values of lc were used in a fixed mesh (mesh 

20×40), from which the influences of the internal length scale on biaxial tests results could be 

investigated. 

The load–displacement curves with four different lc are plotted in Figure 3-7. When lc equals 

zero, the micropolar model reverts to a classical one, and the numerical difficulties still exist in 

softening regime. The load–displacement curves show that the load peak depends on the internal 

length scale and increases with lc. In addition, for a larger value of lc, it requires a larger axial strain 

to arrive at the peak load, indicating that the increased lc is able to delay the bifurcation point of a 

structure. In the softening stage, the material having a larger lc also demonstrates a stiffer behavior. 

From a physical point of view, the value of lc controls the domain of the strain localized region, 

consequently, a larger lc can drive more particles located inside the shear band to bear the loading 

together. In this sense, a larger lc makes the bifurcation point more delayed and the strength stiffer. 

 

Figure 3-7 Influence of internal length scale lc on load–displacement curves 
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Figure 3-8 displays shear band contours for three different values of the internal length scale. A 

relatively thin shear band is observed for a small internal length and two thicker shear bands for the 

larger internal lengths. With careful measurement of the shear band inclination of these three results, 

a steeper orientation can be found for the smaller internal length scale, and shear band inclination 

decreases with an increase in lc, even though the difference is not substantial—consistent with the 

findings of Alshibli et al. (2000). The plastic strain distributions along the selected path for the three 

different lc have been presented in Figure 3-9, with values of different l obtained. Based on Figure 

3-8 and Figure 3-9, the thickness of three shear bands having different lc can be calculated, as shown 

in Table 3-2. 

 

Figure 3-8 Influence of internal length scale lc on shear band orientation: (a) lc = 1 mm, 1 = 55.9°; (b) lc = 1.5 mm, 

2 = 54.2°; (c) lc = 2 mm, 3 = 53.2° 
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Figure 3-9 Normalized shear band thickness of different lc: (a) based on plastic strain along the selected horizontal 

path; (b) based on normalized plastic strain along the selected horizontal path 

Table 3-2 shear band patterns for three different internal length scales 

lc [mm]   l [mm]  TSB = l·sin() [mm] 

1.0 15 55.9 12.4 

1.5 18 54.2 14.6 

2.0 23.3 53.2 18 

Shear band thickness in laboratory tests has been measured by a number of researchers, 

beginning with Roscoe (1970). It has been concluded that shear band thicknesses in biaxial tests are 

confined within 5–20 times of the mean grain size based on the laboratory tests (Nübel and Huang, 

2004; Arslan and Sture, 2008b). To discuss the relation between shear band thickness and internal 

length scale or mean grain size, several publications (Vardoulakis et al., 1978; Mühlhaus and 

Vardoulakis, 1987; Desrues, 1990; Alshibli and Sture, 1999, 2000; Viggiani et al., 2001; Alshibli et 

al., 2002; Alsaleh, 2004; Desrues and Viggiani, 2004) on biaxial tests are referred to, in which 

researchers quantitatively studied the influences of mean grain size on shear band thickness. 

Similarly, the relation between shear band thickness and internal length scale has been quantitatively 

defined via a series of numerical simulations in the present study. The experimental results by other 

researchers as well as the simulated results with the micropolar SIMSAND model are summarized in 

Table 3-3. It should be pointed out that the normalized thickness of shear band in simulations is 

obtained by dividing shear band thickness by the internal length scale lc. Subsequently, the relations 
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between shear band thickness and mean grain size or internal length scale are alternatively presented 

in Figure 3-10 and Figure 3-11. 

In Figure 3-10 and Figure 3-11, the abbreviations Exp. and Sim. denote the experimental and 

simulated results, respectively. Figure 3-10 indicates that the simulated results are very consistent 

with the experimental results, which are also located within the two dashed lines: 5lc < TSB < 20lc. 

Additionally, shear band thickness in simulations increases with the internal length scale as the 

relation between shear band thickness and mean grain size in experiments. Figure 3-11 shows that 

the normalized value of shear band thickness decreases with increased mean grain size or internal 

length scale. Thus, the assumption that lc equals d50 in the micropolar model is a reasonable one—or 

at least appropriate for the dimensions of a laboratory specimen. 

Table 3-3 Shear band thickness in biaxial tests from experiments and simulations 

Technique Reference d50 (lc) [mm] TSB [mm] TSB/d50 (TSB/lc) 

Experiments 

Muhlhaus and 

Vardoulakis (1987) 

0.2 3.7 18.5 

0.33 4.3 13.0 

Desrues et al. 

(2004) 

0.35 7.5 21.4 

1.2 13.5 11.3 

2.4 17.0 7.1 

3.2 22.0 6.9 

Alshibli et al. 

(1999) 

0.22 3.0 13.6 

0.55 6.2 11.3 

1.6 17.3 10.8 

Numerical 

simulations 

Simulations with 

micropolar 

SIMSAND model 

1.0 12.4 12.4 

1.5 14.6 9.7 

2.0 18.0 9.0 
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Figure 3-10 Relationship between thickness of shear band and micro structural size 

 

Figure 3-11 Normalized shear band thickness versus mean grain size or internal length scale 

Based on the foregoing, the internal length scale lc can be taken to significantly influence the 

material’s strength and the shear band patterns. The larger lc is, the larger and later the peak loading 

will be, and also the stiffer the load–displacement curve in the softening regime for a larger lc. Shear 

band inclination will decrease slightly as lc increases. Shear band thickness increases with the 

internal length scale lc, whereas normalized shear band thickness decreases with an increase in lc. 

Finally, in the case of a structure’s dimensions at a laboratory scale, the mean grain size can 

reasonably be regarded as the internal length scale of a micropolar model. 
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3.2.6 Influences of the micropolar shear modulus 

According to the findings of other researchers (de Borst and Mühlhaus, 1991; de Borst and Sluys, 

1991; de Borst, 1993; Arslan and Sture, 2008b, a; Tang and Li, 2008), it has been widely accepted 

that Gc can be set to about half the conventional shear modulus G. In the opinion of these authors, 

when the micropolar shear modulus is set to Gc≥0.5G, it has a very slight influence on the final 

results, such as shear band thickness and load carrying capacity. Consequently, emphasis has always 

been laid on researching the internal length scale lc in the past. However, the influences of micropolar 

modulus on shear band patterns and load carrying capacity have never been verified, and discussions 

of Gc have been infrequent. 

In this section, the influences of the micropolar shear modulus Gc on shear band patterns and 

load carrying capacity were investigated. As has already been illustrated, the theorem of conjugate 

shearing stress is no longer satisfied in micropolar theory because of microrotation. Thus, the 

influence of Gc on shear stress and shear strain as well as the newly produced curvature and moment 

were also discussed. 

When the micropolar shear modulus Gc equals zero, the micropolar model reverts to a classical 

one, and the simulations suffer from numerical difficulties and mesh dependency problems. Thus, by 

increasing the value of Gc gradually, it is possible to find a value of Gc that is able to entirely 

overcome the mesh dependency problems. Several relatively small micropolar shear moduli, such as 

Gc = 0.01G, Gc = 0.05G, and Gc = 0.1G, were tested initially. The load–displacement curves are 

shown in Figure 3-12, from which it can be found that once the micropolar model reverts to a 

classical one (with Gc being set to null), the convergence property is worse, especially in the 

post-failure regime, and with increased Gc, the convergence property becomes better than before. 

Moreover, Gc can affect peak load and stiffness in the softening regime: the larger the Gc, the stiffer 

the material.  
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Figure 3-12 Influence of a small Gc on load–displacement curves 

In further researching the influences of Gc on load carrying capacity, other values of Gc must 

also be discussed, such as Gc = 0.25G, Gc = 0. 5G, Gc = 1.0G, and Gc = 2.0G. The load–displacement 

curves are shown in Figure 3-13, from which it can be found that when Gc≥0.1G, the numerical 

calculations become very stable, and the differences between these curves are slight. Furthermore, 

after the condition Gc≥0.5G is satisfied, the micropolar shear modulus has no influence on the 

mechanical response, as argued by other researchers. For the values of Gc = 0.5G, Gc = G, and Gc = 

2G, the three shear bands identified by the plastic strain are shown in Figure 3-14, letting us remark 

on not only the shear band thickness but also the orientation as being consistent for the three 

different Gc. A more precise measurement with which to compare shear band thickness is shown in 

Figure 3-15 for which the three curves are also wholly consistent with one another—which means 

that shear band thickness is not influenced by the value of Gc. 
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Figure 3-13 Influence of micropolar shear modulus Gc on load–displacement curves 

 

Figure 3-14 Influence of micropolar shear modulus Gc on shear band orientation: (a) Gc = 0.5G, 1=53.22°; (b) Gc = 

1.0G, 2=53.22°; (c) Gc = 2.0G, 3=53.22° 
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Figure 3-15 Influence of micropolar shear modulus Gc on shear band thickness 

Influences of the micropolar shear modulus Gc on shear strain and shear stress are shown in 

Figure 3-16 and Figure 3-17, from which it can be found that the directions of shear strain and shear 

stress change from clockwise to counterclockwise at the center of the shear band and that peak 

values of shear strain and shear stress are closely related to the choice of Gc. However, it should be 

noted that the differences are not overly large, and the peak values of shear strain and shear stress do 

not grow monotonically with the increase in Gc. 

For two-dimensional problems in micropolar theory, two additional parameters (i.e., internal 

length scale lc and micropolar shear modulus Gc) are newly incorporated. Consequently, 

microcurvatures and micro-bending moments are produced between the particles. Accordingly, the 

influences of the micropolar shear modulus on microcurvatures and micro-bending moments have 

been discussed. The distribution of microcurvatures and micro-bending moments inside the shear 

band is shown in Figure 3-18 and Figure 3-19, and, similar to shear strain and shear stress, the 

directions of curvatures and bending moments are found to change from clockwise to 

counterclockwise at the center of shear band. Furthermore, the coincided curves in these two figures 

amply demonstrate that the value of the micropolar shear modulus affects the microcurvatures and 

micro-bending moments only slightly. 
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Figure 3-16 Influence of micropolar shear modulus Gc on shear strain 

 

Figure 3-17 Influence of micropolar shear modulus Gc on shear stress 
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Figure 3-18 Influence of micropolar shear modulus Gc on micro-curvature 

 

Figure 3-19 Influence of micropolar shear modulus Gc on micro-moment 

From the foregoing discussions, it can be concluded that for a very small micropolar shear 

modulus Gc, the value of Gc can affect the convergence property and the mechanical response, and 

when Gc≥0.5G is satisfied, it has almost no influence on shear band patterns and load carrying 

capacity. Accordingly, when we aim at the research of shear band patterns or the strength of 

specimens, there is no need to identify the value of the micropolar shear modulus. These 

verifications support past research, and the value Gc = 0.5G can be adopted in the present study, as 

other researchers have done before. Moreover, the microcurvatures and micro-bending moments 
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inside the shear band are also found to be unrelated to the choice of Gc. Shear strain and shear stress 

are affected slightly by the value of Gc, but their peak does not monotonically increase with Gc. 

3.3 Some other advantages of the micropolar approach 

From the foregoing discussion, we see that the micropolar technique offers great promise for 

overcoming numerical difficulties while dealing with the mesh dependency problems in finite 

element analysis. Moreover, it can reflect the kinematic behaviors of microstructures of materials. 

Thus a micropolar model can monitor the onset and evolution of shear bands by tracing the particles’ 

rotations. For dense materials, strain localization can be explained by the great dilatancy inside the 

strain-localized region, which is caused by particles’ rotations and rearrangements. Because the 

conventional constitutive models within the framework of classical continuum theory have not 

considered the independent rotations of micro particles, they cannot reflect the real kinematics of the 

shear band evolution. Conversely, the evolution process can be recorded in the simulated results by 

the micropolar model, as in Figure 3-20. Subfigures (a), (b) and (c) denote the onset, developing and 

fully formed shear band, respectively. We can find that the microrotations start from the corners due 

to the constraints on the boundaries, then propagate to the center of the specimen until the complete 

formation of two conjugated shear bands. 

 

Figure 3-20 Evolution of shear band based on the particles’ rotations: (a) shear band onset corresponding to axial 

strain 2.5%; (b) corresponding to axial strain 3%; (c) fully formed shear band corresponding to axial strain 5% 
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For dense materials, strain localization phenomena are often accompanied by a reduction in 

load-carrying capacity. However, experiments have demonstrated an absence of strain softening 

behavior for loose materials when loaded. Considering this, the micropolar approach is always 

adopted when describing dense materials’ behaviors, whereas loose materials have been never 

studied by a micropolar model. In fact, the micropolar model has also significantly influenced the 

final results for loose materials by incorporating the internal length scale. 

In this section, the simulated results from a classical continuum model and its polarized model 

were compared and discussed in terms of shear bands and mechanical response. Shear bands are 

identified by axial strain. For simulated results within the framework of the classical continuum 

theory laid out in Figure 3-21, it may be observed that several shear bands divide the specimen into 

many distributed sections and that the smaller the mesh size, the more divided the sections produced. 

Even the thickness of a single shear band is not the same in local region (the finer the mesh size, the 

thinner the shear band), but different quantities of shear band for different discretization produce a 

similar global mechanical response, see Figure 3-22. From the load–displacement curves, it can be 

seen that there is no softening behavior for loose materials in biaxial tests. However, the strong 

oscillations of the load versus displacement curves can be found just after the onset of shear bands 

because of the numerical instabilities within the classical continuum theory. Furthermore, the 

oscillations of the global load–displacement curves of the specimens can be explained by the 

accumulation of local numerical instabilities, as indicated in Figure 3-23 with elements located on 

the horizontal bearing profile given in subfigure (a) and their bearing capacities in subfigure (b). 

Generally speaking, mesh dependency phenomena for loose materials are not as serious a matter 

as in dense materials, but numerical instabilities exist in the post-failure regime. 
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Figure 3-21 Shear bands for different discretization obtained from the classical model for loose materials: (a) mesh 

10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 

 

Figure 3-22 Load–displacement curves for different discretization based obtained from the classical model for loose 

materials 

 

0 3 6 9 12
0

10

20

30

40

L
oa

d 
[k

N
]

Displacement [mm]

 

 

Mesh 10x20 Classical
Mesh 15x30 Classical
Mesh 20x40 Classical
Mesh 30x60 Classical



 

115 

 

 

Figure 3-23 Load–displacement curves of each element from the classical simulation: (a) elements located on the 

horizontal profile; (b) local–displacement curves of each element 

After the governing field equations were regularized using the micropolar approach, the failure 

mode is very different from that associated with classical continuum theory, and a consistent 

diffusion mode is found in the loose specimen for the four different mesh sizes rather than shear 

strain–localized mode, as in Figure 3-24, which has been experimentally verified by many 

researchers in the past. When numerical simulations are conducted within the framework of the 

micropolar continuum theory, not only the displacements of particles but also those particles’ 

rotations originating from the boundary constraints play a main role, together, in forming the failure 

mode. The load–displacement curves obtained from the micropolar model in Figure 3-25 are seen to 

be smoother and more stable than classical ones. Moreover, the four curves for different 

discretization in Figure 3-25 coincide with each other absolutely, thereby also demonstrating the 

regularization ability of the micropolar technique when overcoming numerical difficulties and 

dealing with mesh dependency problems. Similarly, the smooth curves can be also explained by the 

accumulations of local bearing curves of each element located on the horizontal profile, as in Figure 

3-26. Compared to the local curves from classical simulations, it is obvious that the load–

displacement curves of each bearing element from micropolar simulations become more stable. 

Because the incorporated internal length scale can drive more particles in its surroundings to bear the 

loading, the load carrying capacity achieved by the micropolar model is a little higher than that given 

by the classical constitutive model, increasing gradually to reach a stable stage.  
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Figure 3-24 Diffusion mode for different discretization obtained from the micropolar model for loose materials: (a) 

mesh 10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 

 

Figure 3-25 Load–displacement curves for different discretization based on micropolar model for loose materials 
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Figure 3-26 Load–displacement curves of each element from the Cosserat simulation: (a) elements located on the 

horizontal profile; (b) local–displacement curves of each element 

From the simulated results of loose materials and dense materials in the previous sections, we 

can find that the density of materials greatly influences the behavior of granular materials. Indeed, 

density significantly affects not only failure mode but also peak strength. Dense materials always 

have obvious intense located shear bands, whereas the loose specimens will undergo a diffuse failure 

mode. Regarding load carrying capacity, dense materials have a higher strength than loose ones. 

Based on these simulations—although the differences are very slight—mesh dependency 

problems still exist in loose materials. Although the micropolar approach has been used chiefly to 

describe materials having softening behavior, and only rarely to describe loose material, the 

additional internal length scale and rotational degree of freedom in the micropolar formulations can 

maintain the ellipticity of the partial differential equations during finite element analysis. As a result, 

numerical instabilities are well overcome and physically meaningful solutions finally obtained. 

3.4 Proposition of the regularization effectiveness ratio—lc∕le 

The simulations in the previous section showed that even though mesh dependency problems have 

significantly improved, the load–displacement curve of mesh 10×20 still could not coincide with the 

other three relatively finer meshes. Thus, it is believed that for a fixed internal length scale, the 

element size may affect the regularization effect. If the element size is too large compared to the 
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internal length scale parameter, then the element size le controls the thickness of shear bands instead 

of the internal length parameter lc. Purely from the perspective of regularization effectiveness, then, 

the internal length scale parameter lc incorporated in the micropolar model and the element size le 

should be considered simultaneously via a series of simulations of biaxial tests. Several researchers 

(Ristinmaa and Vecchi, 1996; Sharbati and Naghdabadi, 2006; Tejchman and Niemunis, 2006) have 

suggested that only if the ratio of the internal length to the discretized element size (lc∕le) is larger 

than a certain value, effective the micropolar approach will be to overcome mesh dependency 

problems. Ristinmaa and Vecchi (1996) found that mesh dependency problems could be wholly 

alleviated when the ratio condition lc∕le > 0.2 was satisfied. According to Tejchman (1998, 2006), 

all simulations were based on the premise lc∕le > 0.2; Sharbati and Naghdabadi (2006) proposed a 

new criterion lc∕le > 0.15 with which to overcome mesh dependency problems. Accordingly, in this 

section, the effective value of the internal length scale parameter lc compared to the element size le 

will be discussed. 

To study the regularization effectiveness of the micropolar model, four different values of the 

internal length scale lc have been attempted for each fixed element size, with four meshes ranging 

from coarse to fine. Thus, four groups corresponding to 16 cases are listed in Table 3-4 for analysis. 

Detailed information about the simulations is described hereafter. The width and height of the 

specimen was 10×20 cm, with 10×20, 15×30, 20×40, and 30×60 meshes denoting four different 

divided meshes. The element type adopted was the user-defined eight-node biquadratic quadrilateral 

element considering the rotational degree of freedom introduced in Chapter 2. Dry dense material is 

known to exhibit softening behavior when sheared excessively, and shear band rather than diffusion 

is the main failure mode in biaxial tests. Accordingly, dense material was used in the simulations 

based on the critical state–based micropolar model. Regularization effectiveness can be judged by 

two criteria: thickness of shear band and mechanical response. In this section, shear band contour is 

identified by the distribution of axial strain. Based on the precede results laid out, it was found that 

the load–displacement curve is a more precise criterion for judging regularization effectiveness. In 

this sense, then, a criterion - load–displacement curves coincide with each other or not for the four 

different meshes for a fixed internal length scale - is adopted to judge the degree of mesh dependency. 

As already mentioned, only if the ratio of lc to le reaches a certain value is the micropolar theory able 
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to overcome the mesh dependency problems. We aim at finding the ratio through use of the 

following simulated results. 

Table 3-4 Different combinations of internal length lc and element size le 

lc[mm] 1.0 1.5 2.0 2.25 

le[mm] 10 6.67 5 3.33 10 6.67 5 3.33 10 6.67 5 3.33 10 6.67 5 3.33

lc⁄le 0.1 0.15 0.2 0.3 0.15 0.225 0.3 0.45 0.2 0.3 0.4 0.6 0.225 0.338 0.5 0.675

First, the simulations of group 1 were made as shown in Table 3-4, using a fixed internal length 

scale lc = 1 mm for four different discretization meshes of 10×20, 15×30, 20×40, and 30×60, 

corresponding to the four different element sizes le shown in Figure 3-27; the mechanical response 

curves are plotted in Figure 3-28. Obviously, not only shear band thickness but also load–

displacement curves are mesh-dependent. The shear bands are concentrated only in a thickness of 

about two element sizes. As a result, the coarse mesh produces a thick shear band, whereas the fine 

mesh produces a narrow shear band. That is to say, the element size controls the shear band thickness 

but not the mean grain size or the internal length scale. For load–displacement curves, even though 

the peak strength is the same, the load carrying capacity is higher for the coarse mesh than for the 

fine mesh in the post-failure regime (softening regime). That the load–displacement curve for a ratio 

of 0.2 does not coincide with that for a ratio of 0.3 signifies that the ratio 0.2 does not satisfy the 

mesh independency criterion in the present study. 

In group 2 with lc = 1.5 mm, the shear band contours in Figure 3-29 are found to be significantly 

mesh-independent. However, from the load–displacement curves in Figure 3-30, we see that the 

curve of the relatively coarse mesh 10×20 is not consistent with the other three curves, although the 

other three cases are believed to be mesh-independent. Thus the ratio 0.225 satisfies the criterion for 

overcoming the mesh dependency problems. 

For group 3 with lc = 2 mm, the simulated results are shown in Figure 3-31 and Figure 

3-32—similar to those produced by the second group in that the mesh dependency problems of the 

three relatively fine meshes are entirely alleviated. Certainly, the ratio 0.3 is a satisfied criterion, then, 

because it satisfies the criterion 0.225. 
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From these first three groups, we can assume that the ratio lc∕le should be larger than 0.225, 

making this a criterion for regularization effectiveness in the critical state–based micropolar model. 

To check the reasonability of this suggested criterion, we perform simulations for group 4 with lc = 

2.25 mm. In this group, the smallest ratio is 0.225. The simulated results are shown in Figure 3-33 

and Figure 3-34, and we find not only the shear band thickness but also load–displacement curves, to 

some extent, to be mesh-independent. We can thus conclude that the criterion for regularization 

effectiveness for the micropolar model as regards mesh dependency problems is met, requiring that 

the ratio lc∕le exceed 0.225 in the present study. However, it must be noted that this ratio could be 

affected by other factors, such as the scale of the model, material density, confining pressure, and the 

parameters of the constitutive model. 

 

Figure 3-27 Shear bands for different discretization by the micropolar model with lc = 1 mm: (a) 10×20 mesh; (b) 

15×30 mesh; (c) 20×40 mesh; (d) 30×60 mesh 
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Figure 3-28 Load–displacement curves for different discretization using the micropolar model: lc = 1 mm 

 

Figure 3-29 Shear bands for different discretization by the micropolar model with lc = 1.5mm: (a) mesh 10×20; (b) 

mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 
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Figure 3-30 Load–displacement curves for different discretization by micropolar model: lc=1.5mm 

 

Figure 3-31 Shear bands for different discretization by the micropolar model with lc = 2mm: (a) mesh 10×20; (b) 

mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 
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Figure 3-32 Load–displacement curves for different discretization by micropolar model: lc=2mm 

 

Figure 3-33 Shear bands for different discretization by the micropolar model with lc = 2.25mm: (a) mesh 10×20; (b) 

mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 
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Figure 3-34 Load–displacement curves for different discretization by micropolar model: lc=2.25mm 

3.5 Influencing factors on shear band and regularization effectiveness ratio 

As was pointed out, the effective ratio lc∕le for the micropolar approach is 0.225—even as it had 

been also argued that this ratio might not be a constant but rather might be affected by many factors, 

such as confining pressure, initial density, and constitutive parameters. Therefore, the influences of 

these factors on the regularization effectiveness ratio were investigated in this section. 

3.5.1 Influence of confining pressure  

The softening behavior following the peak-point results from bifurcation instability in the 

neighborhood, which causes localization of deformations into narrow shear zones and enables 

development of the kinematics of a failure mechanism. In short, global softening behavior has been 

used to describe the slip mechanism after the onset of the shear band. Based on earlier discussions, 

shear bands in biaxial tests have been proven to be affected by several factors, including grain size, 

specimen density, and confining pressure, which can be reflected by shear band thickness and a more 

accurate criterion: the mechanical response. 

It can be easily understood from a physical point of view that loose sand might be dilatant under 

low confining pressure, whereas dense sand might contract under high confining pressure. There is 

thus no doubt that the confining pressure and the specimen density greatly influence the failure mode 
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(shear band) and strength of the specimen in biaxial tests. Consequently, for the micropolar approach, 

the confining pressure may affect the regularization effectiveness, which may be explained by the 

changing of the effective ratio lc/le. Considering that the differences of shear band inclined angle  

compared to the initial configuration for different cases are so slight when the simulations are within 

the framework of micropolar theory, different shear bands comparisons can be made with reference 

to shear band thickness. 

In this section, the influence of the confining pressure on load carrying capacity and shear band 

thickness was observed to evaluate the regularization effectiveness ratio. Three confining pressures 

50 kPa, 100 kPa, and 200 kPa were adopted, and for each confining pressure, three different meshes 

from coarse to fine were used for the discretization. Moreover, the ratio lc/le in this section was set 

greater than or equal to 0.225, thus satisfying the criterion obtained from section 3.4. From Figure 

3-35, it can be found that the confining pressure greatly influences the load–displacement curves. 

First, the stiffness decreases with a decrease in confining pressure during the hardening regime, and 

the softening behavior becomes more significant when the confining pressure is smaller in the 

post-failure regime. Second, the axial strain at peak-load (near the onset of shear band) increases 

with increase in the confining pressure; it seems that the bifurcation point is delayed for specimens 

subjected to high confining pressure. Third, load carrying capacity increases with increased 

confining pressure. These findings entirely agree with the findings of Han and Drescher (1993), of 

Alshibli and Sture (2000), and of Desrues and Viggiani (2004), who performed a series of biaxial 

tests to investigate the effects of the confining pressure on the onset and formation of shear bands. 

Closer scrutiny of the three sets of curves in Figure 3-35 reveals that the mesh dependency problems 

occurs at the end of the softening regime, especially for the low confining pressure. To some extent, 

then, it requires that the micropolar approach play additional roles in fully alleviating mesh 

dependency problems when the confining pressure is relatively low. In short, a smaller element size 

le (larger ratio lc /le) is needed in order to regularize the solutions when the confining pressure is 

relatively low. 

The thickness of the shear band can be found in Figure 3-36, in which sub-figure (a) signs the 

values of equivalent plastic strain, and sub-figure (b) can be used to judge the shear band thickness. 

It indicates that confining pressure’s influence on shear band thickness is very slight. However, the 
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peak value of the equivalent plastic strain inside the shear band is obviously affected by the 

confining pressure. Smaller the confining pressure, greater is the peak value of the equivalent plastic 

strain. 

 

Figure 3-35 Influence of confining pressure on the load-carrying capacity 

 

Figure 3-36 Influence of confining pressure on shear band thickness: (a) based on plastic strain; (b) based on 

normalized plastic strain 
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3.5.2 Influence of initial density  

Lee (1970) and Marachi et al. (1981) concluded that as specimen density increases, specimens tend 

to fail at a smaller axial strain, which pointed out the influence of the initial density on strain 

localization. Later on, however, Han and Drescher (1993) and Alshibli and Sture (2000) argued that 

rather than initial density, confining pressure was the main factor affecting the onset of shear band.  

Three different initial void ratios were used alternatively, and for each void ratio, three different 

meshes were discretized. According to Figure 3-37, we can see that both the hardening and the 

softening behavior are more obvious when the material is denser, the initiation of the bifurcation 

point for specimens with different initial densities is very close, and the peak load carrying capacity 

increases with the initial density. Most of all, the regularization effectiveness of the micropolar 

approach for denser materials (blue curves) is worse than for the other two sets of simulations, 

especially at the end of the softening regime: it requires the micropolar approach to play a stronger 

role in overcoming the mesh dependency problems for denser materials. In short, a smaller element 

size le (larger ratio lc /le) is required for regularizing solutions when the initial density is larger. 

Figure 3-38 displays shear band thickness, allowing us to find that shear band thickness is 

almost identical for different initial densities. Accordingly, initial density has little influence on the 

thickness of shear bands in biaxial tests. The differences of peak values for plastic strain inside the 

shear band are also slight. 

 

Figure 3-37 Influence of initial density on the load carrying capacity 
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Figure 3-38 Influence of density on shear band thickness: (a) based on plastic strain; (b) based on normalized 

plastic strain 

3.5.3 Influence of several key parameters  

In this section, several important constitutive parameters, such as the critical friction angle u 

(controlling the position of the critical state line), the strength parameter np (controlling the peak 

stress), and the deformation parameter nd (controlling dilatancy) were discussed in terms of how they 

affect global strength as well as shear band thickness. Moreover, for each fixed parameter, the model 

was also discretized into three different meshes ranging from coarse to fine as had been done in 

previous sections. Thus, by comparing different meshes, the influence of these parameters on the 

regularization effectiveness ratio was observed. 

3.5.3.1 Influence of the critical friction angle u 

Three different critical friction angles u were used, and for each critical friction angle three different 

meshes were considered. The load carrying capacity curves for different cases are given in Figure 

3-39, and from them certain phenomena can be observed: First, stiffness increases with critical 

friction angle during the hardening regime while at the same time softening behavior in the post-peak 

regime becomes significant when the critical friction angle increases during softening regime, as for 

the blue curves in Figure 3-39. Second, axial strain at the initiation of shear band increases 

significantly with critical friction angle; seemingly, the bifurcation point is delayed if the material 
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has a larger critical friction angle. Third, load carrying capacity increases with critical friction angle. 

Finally, it can be shown that the value of the critical friction angle greatly affects the effectiveness of 

regularization—that is to say, for material having a larger critical friction angle u, the micropolar 

approach is required to play a stronger role in overcoming the mesh dependency problems during 

finite element analysis. Thus, a smaller element size le (larger ratio of lc to le) is needed to regularize 

solutions if a larger critical friction angle u has been adopted. 

Considering the shear band thickness shown in Figure 3-40, we can find that differences of 

equivalent plastic strain distributions among the three groups having a different value of critical 

friction angle are less than obvious. Thus the critical friction angle u has little influence on the 

thickness of shear bands in biaxial tests, but the critical friction angle u significantly affects the peak 

value of equivalent plastic strain inside the shear band—and the less u is, the greater the plastic 

strain peak inside the shear band.  

 

Figure 3-39 Influence of critical friction angle u on the load carrying capacity 
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Figure 3-40 Influence of critical friction angle u on shear band thickness: (a) based on plastic strain; (b) based on 

normalized plastic strain 

3.5.3.2 Influence of the interlocking parameter np 

The influence of the interlocking parameter np on strength and shear band was discussed in this 

section. Three different values of np have been adopted, with three different meshes performed for 

each fixed np. The load–displacement curves of the different cases are shown in Figure 3-41, 

allowing certain conclusions to be drawn. First, stiffness increases with the parameter np during the 

hardening regime, while at the same time the softening behavior in the post-peak regime becomes 

more significant when the parameter np increases as for the blue curves in Figure 3-41 and the 

strength of the largest np at the end of the softening regime is even less than for the other two groups 

(red and pink curves). Second, the axial strain at the onset of shear band increases slightly with the 

increase of the parameter np, which is to say that a large parameter np is able to delay the bifurcation 

point. Third, the parameter np greatly influences the specimen strength, with peak load carrying 

capacity increasing significantly with the value of the parameter np. Finally, it was also found that 

parameter np significantly affects the effectiveness of regularization, requiring the micropolar 

approach to play more roles in overcoming the mesh dependency problems for material having a 

larger parameter np. In other words, for materials having a larger parameter np, a smaller element size 

le (larger ratio lc/le) is always needed to regularize the solutions.  

Comparisons of shear band thickness for different cases are shown in Figure 3-42, which 

indicates that the larger the parameter np, the narrower the shear band will be. Nevertheless, the 
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influence of parameter np on shear band thickness is not very significant. Moreover, the peak value 

of plastic strain can be found to be also affected by the value of np, and the larger np is, the greater 

the maximum plastic strain inside the shear band. 

 

Figure 3-41 Influence of strength parameter np on the load carrying capacity 

 

 

Figure 3-42 Influence of strength parameter np on shear band thickness: (a) based on plastic strain; (b) based on 

normalized plastic strain 
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3.5.3.3 Influence of the interlocking parameter nd 

The deformation parameter nd, which controls the dilatancy behavior, is very important. It influences 

the specimen strength, the shear band thickness, and the effectiveness of regularization, as discussed 

in this section. The load carrying capacity of the specimen in different cases is shown in Figure 3-43, 

allowing certain observations. First, stiffness increases with deformation parameter nd during the 

hardening regime, while at the same time the softening behavior in the post-peak regime becomes 

more significant when the deformation parameter nd increases as for the blue curves in Figure 3-43. 

Second, the most obvious influence of deformation parameter nd on the load–displacement curve is 

that the axial strain at the initiation of the shear band increases significantly with nd. That is to say, 

the bifurcation point occurs earlier if the material has a larger deformation parameter nd, which also 

demonstrates that the strain localization is closely related to the local dilatancy. Third, the influence 

of the deformation parameter nd on the peak load carrying capacity can be found very slight. Finally, 

it can also be observed that deformation parameter nd affects the effectiveness of regularization 

significantly, requiring the micropolar approach to play more roles in overcoming the mesh 

dependency problems for materials having a larger deformation parameter nd. In short, a material 

having a larger deformation parameter nd needs a smaller element size le (larger ratio of lc to le) to 

regularize the solutions during finite element analysis.  

Shear band thickness for different cases is shown in Figure 3-44, showing that differences 

among cases are not very obvious: the deformation parameter nd has little influence on the thickness 

of shear bands in biaxial tests. However, the peak value of the equivalent plastic strain inside the 

shear band is seriously affected by the value of nd—and the larger nd is, the higher the maximum 

equivalent plastic strain. 
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Figure 3-43 Influence of deformation parameter nd on the load carrying capacity 

 

Figure 3-44 Influence of deformation parameter nd on shear band thickness: (a) based on plastic strain; (b) based 

on normalized plastic strain 

 

3.6 Conclusions 

A series of simulations of biaxial tests using the polarized SIMSAND model was conducted in this 

chapter. Based on these simulated results, the shear band was deeply investigated, and some 

conclusions have been obtained as follows. 

nd = 2.0

nd = 1.0
nd = 3.0

(a) (b)
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Through comparison with simulated results from the classical continuum theory–based model, 

the micropolar technique can be seen to have great capacity for overcoming numerical difficulties 

and is capable of dealing with mesh dependency problems during finite element analysis. 

Two-dimensional problems call for two newly incorporated parameters, among which the internal 

length scale lc has particularly great influence on the shear band patterns and the load carrying 

capacity of a specimen, whereas the influence of the micropolar shear modulus Gc is negligible. The 

larger lc is, the larger and later the peak load carrying capacity will be—and a larger lc corresponds to 

more ductile material in the softening regime. Shear band inclination decreases slightly with the 

increase in lc. Shear band thickness increases with internal length scale lc, whereas normalized shear 

band thickness decreases with the increase of lc. All these findings also validate the physical 

assumption that lc can be regarded as the mean grain size d50—at least during simulations of small 

structures during biaxial tests in the laboratory. 

Unlike in the articles already referenced, which merely suggested a ratio for lc in terms of le, the 

regularization effective ratio lc/le was first proposed in the present study, along with the suggestion 

that for simulations having different meshes one certain ratio exists that can entirely alleviate mesh 

dependency problems. Moreover, discussions of the regularization effectiveness ratio of the 

micropolar technique have been featured in details. However, it must be noted that this ratio can be 

affected by other factors, such as material density, confining pressure, and the parameters of the 

constitutive model.  

The influence on load carrying capacity and the thickness of shear bands of some other factors 

has been discussed, with simulated results demonstrating that peak load carrying capacity increases 

with initial density, confining pressure, critical friction angle u, strength parameter np, and 

deformation parameter nd. However, the impact of each factor varies—for example, the deformation 

parameter nd has only slight, indeed ignorable, effect on the peak load carrying capacity, whereas the 

strength parameter np greatly influences the peak load carrying capacity. The influence on shear band 

thickness of these factors is negligible. Based on these influence analyses, a consistent conclusion 

has been obtained: if the softening behavior is more significant during the softening regime, then a 

smaller le (larger effective ratio lc/le) is needed to entirely alleviate mesh dependency problems.  
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Chapter 4 Second-Order Work Criterion in Micropolar Theory  

4.1 Introduction 

It is well known that the failures of geostructures are due to the loss of stability. The definition of 

stability was initially introduced by Lyapunov (1907). Half a century later, some theories associated 

to the stability were put forward one after another, including the stability criteria of Drucker (1957) 

and of Hill (1958), among others. The stability criterion proposed by Hill (1958) was the one favored 

by numerous researchers in decades. The form of Hill’s criterion can be expressed as the 

second-order work of materials in a Lagrangian formalism. Stability is related to the sign of the 

second-order work. For the small deformation cases, the second-order work can be expressed by the 

Cauchy stress tensor and strain tensor instead of the first Piola-Kirchoff stress tensor and the general 

term of deformation gradient in the original form (Nicot et al. 2007).  

The second-order work in the numerical simulations with DEM (discrete element method) and 

FEM (finite element method) has been used to judge the instability of homogenous material 

problems (Hossain et al., 2007; Nicot and Darve, 2007; Nicot et al., 2007; Nicot et al., 2009; Nicot et 

al., 2011; Daouadji et al., 2012; Nicot et al., 2012a; Nicot et al., 2013; Wan et al., 2013; Nicot and 

Darve, 2015; Hadda et al., 2016; Nicot et al., 2017). Moreover, the second-order work criterion was 

recently extended from the homogeneous problems to judge also the instability of boundary value 

problems (Nicot, 2007).  

In this chapter, the second-order work in micropolar theory has first been formulized. Then, 

based on the simulations of a biaxial test, the differences in the expression of the second-order work 

by classical continuum theory and micropolar theory based models were discussed and compared, 

from which the contributions of the couple stresses and curvatures in micropolar model to the 

second-order work have been analyzed. What’s more, the mesh independency in simulating the shear 

bands in biaxial tests of the micropolar approach was demonstrated by the evolution of the 

second-order work during loading. At last, the envelope of the vanishing of the second-order work 

within the framework micropolar theory was also applied to an analysis of the failure a retaining 

wall.  
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4.2 Mathematical implications of instability  

4.2.1 Material instability 

The definition of stability was initially introduced by Lyapunov (1907) for elastic materials only. 

Since then, many researchers have contributed much to the domain of the instability of materials 

(Hill, 1958, 1961; Rudnicki and Rice, 1975; de Borst et al., 1993; Nova, 1994, 2003; Daouadji et al., 

2009; Nicot et al., 2009; Nicot et al., 2011; Nicot and Darve, 2011; Daouadji et al., 2012; Nicot et al., 

2012a; Hadda et al., 2013; Nicot et al., 2013; Wan et al., 2013; Nicot and Darve, 2015; Hadda et al., 

2016; Nicot et al., 2017). 

The classical stable postulate proposed by Drucker (1957) requires a linear incremental stress–

strain relation and an associated flow rule. The criterion of stability is more restrictive, because it 

requires that the plastic component of the second-order work density remains positive: 

 2 2 2 0p
pl el ij ijd d d      W W W   (4.1) 

Thus, the consequence is that an instable state for Drucker’s criterion might be stable for Hill’s 

criterion hereafter explained. 

In Hill’s (1958, 1961), a slight wave perturbation acted on an infinite material with a 

homogenous state of stress and strain, after which the stability was checked by analyzing the 

response to the wave. If the perturbation increased, the material was in a state of instability; 

otherwise, the material was stable. According to Hill (1958), the second-order work must be positive 

for the constitutive relationship of stable material (expressed by the Cauchy stress and strain herein). 

 2 0ij ijd    W   (4.2) 

We can find for the perfect elastic plastic materials that Drucker’s criterion is the same as Hill’s 

criterion. If we limit our interest to incrementally linear constitutive equations, 

 ij ijkl klD     (4.3) 

then Eq. (4.2) can be expressed as 

 0ij ijkl klD      (4.4) 
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where ij  and ij  are strain rate and stress rate tensors, respectively, ijklD  is the material tangential 

matrix (in general non-symmetric), and the summation convention is adopted. Conversely, if the 

value of the equation 0ij ijkl klD    , it satisfies a necessary condition for material instability. If we 

consider the vectorial instead of the tensorial form, it can be expressed as follows 

 0T T ε σ ε D ε      (4.5) 

Similarly, the equality of Eq. (4.5) marks the onset of material bifurcation. Mathematically, this 

condition coincides with the loss of the positive-definiteness of the material tangential stiffness 

matrix D or the singularity of the symmetric part of D 

 det( ) 0TD + D   (4.6) 

The loss of the uniqueness of the incremental solution in theoretical continuum mechanics was 

first studied by Darve and Chau (1987). Then, the non-uniqueness of the solutions was theoretically 

demonstrated by the loss of controllability (Nova, 1994, 2003; Wan et al., 2013). Based on the 

stress-strain curve, the limit point condition has the form 

 0 σ Dε    (4.7) 

The condition det(D) = 0 can mark the plastic limit and the existence of a non-unique solution 

of the differential Eq. (4.7). For a symmetric tangential stiffness matrix D, the loss of 

positive-definiteness of D coincides with the limit point or the loss of controllability 

(non-uniqueness).  

Obviously, the softening behavior can lead to the violation of the stability criterion that the inner 

product of the stress rate and the strain rate is positive. There is also a class of material instabilities 

that can cause the inner product of stress rate and strain rate to become negative even without the 

occurrence of strain softening (de Borst et al., 1993). For a non-symmetric tangential stiffness matrix, 

the non-symmetry is in itself sufficient to cause the loss of material stability, even if the slope of the 

vertical stress–strain curve is still rising (Rudnicki and Rice, 1975). For the material with the 

non-symmetric tangential stiffness matrix, the loss of material stability may be encountered prior to 

the limit point or loss of uniqueness. The reason is that the real-valued Eigen-spectrum of D is 

bounded by the minimum and maximum eigenvalues of 1/2(D+DT). Thus det(D+DT) = 0 always 

precedes the condition of det(D) = 0 (de Borst et al., 1993; Etse and Willam, 1994).  
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According to the suggestions of de Borst (1993), material instabilities can be classified into two 

major categories. In category one, the prevailing failure mechanism is decohesion, which may be 

denoted as mode I fracture, like fracture in masonry concrete and rocks under low confining pressure 

levels. The second category of failure is governed by the frictional slip, which may be identified as 

mode II failure, like frictional slip failures in metals, in soils, and in concrete and rocks under high 

confining pressure levels. In the same article, de Borst (1993) also argued that this distinction had 

deep implications for the effectiveness of various regularization approaches used to restore the 

well-posedness of the boundary value problems.  

The formation of discontinuity in the deformation gradient has traditionally been identified with 

strain localization. In the research of Rudnicki and Rice (1975), strain localization has been 

considered as a bifurcation in the macroscopic constitutive description of the material. A shear band 

means a zone of intense deformation bounded by two discontinuity planes. It can be detected by the 

vanishing of the determinant of the acoustic tensor in the expression  

 det( ) 0nDn   (4.8) 

where n is the normal vector of the discontinuity (Rudnicki and Rice, 1975). The singularity of the 

acoustic tensor and the formation of the discontinuity correspond to the local loss of ellipticity of the 

rate equilibrium equations. It should be noted that this criterion allows us to detect only certain 

particular failures related to strain localization mode, but not failure in diffuse mode. Fortunately, it 

has been confirmed that the non-positiveness of the second-order work illustrated in the previous 

section can generally be used to detect both diffuse and localized failure (Etse and Willam, 1994).  

To summarize the knowledge of material instability, Wan et al. (2013) clearly defined the 

hierarchy of material instabilities with the sign of each indicator as shown in Figure 4-1 (for a 

non-symmetric constitutive matrix D). For a symmetric constitutive matrix, all indicators tend to 

coincide at the peak response during loading history, with the possibility of det(nDn) occurring later 

in the softening regime. 
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Figure 4-1 Order of instability criteria during loading history for non-symmetric constitutive matrices 

4.2.2 Structural instability 

Based on the material instability aforementioned, the structural instability will be analyzed. 

According to Hill’s definition, the stability of a body (structural stability) that occupies the volume V 

can be guaranteed for all kinematically admissible ε only if Eq. (4.9) is satisfied. If the inequality in 

Eq. (4.9) is replaced by equality, it also means the onset of potential structural instability. Therefore, 

the material instability may lead to structure instability. 

 0T

V
dV  ε σ    (4.9) 

For a discrete mechanical system, we can introduce the structural tangential stiffness matrix K, 

 T

V
dV K B DB   (4.10) 

where the superscript T is the transpose symbol and the matrix B relates the strain rate vector ε to 

the nodal displacement rate vector a , 

 ε Ba   (4.11) 

and the onset of structural bifurcation may be denoted by the loss of positive-definiteness for the 

structural stiffness matrix K 

 Tdet( ) 0K + K   (4.12) 

From Eq. (4.10), we can see that if the local material tangential stiffness matrix D loses 

positive-definiteness, the structural stiffness matrix K may lose positive-definiteness as well. In short, 

material instabilities may lead to structural instability, even in the absence of geometric destabilizing 

terms. However, the loss of positive-definiteness for material stiffness matrix D is not a necessary 

triggered for structural instabilities. But it can result in local loss of ellipticity for the equilibrium rate 

loss of positive definiteness 
of second-order work

(diffuse instability)

loss of ellipticity
(localized instability)

loss of uniqueness
(plastic limit)

W2 = 0; det(D)sym

det(nDn) = 0
det(D) = 0

loading history
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equations. It is worth noting that the ellipticity of the governing equations is one of the three 

necessary conditions for well-posedness of the rate boundary value problems in static analysis, since 

the ellipticity must be preserved in the static case to obtain physically meaningful solutions. The 

other two conditions for well-posedness are the satisfaction of the boundary complementing 

condition and the satisfaction of the interfacial complementing condition (de Borst et al., 1993). 

More details can be found in Needleman (1991). 

When considering structural instability, it must be noted whether the solution in the post-peak 

equilibrium path is the critical one at a lowest energy level or whether other equilibrium states exist 

at the same energy level. For this reason, the solution uniqueness is discussed hereafter. It is assumed 

that there are two different stress field rates 1σ  and 2σ , both of which satisfy the incremental 

equilibrium equation 

 
V

dV  T Tε σ a f   (4.13) 

where  denotes the variation of a quantity and f assembles the external forces. Subtracting the two 

preceding equilibrium equations produces 

 0
V

dV   Tε σ   (4.14) 

where  denotes the difference between two different stress quantities corresponding to the same 

energy level. Substituting Eq. (4.3) and Eq. (4.11) into the foregoing Eq. (4.14), we can find for any 

visual displacement field a, with Eq. (4.14) able to be obtained only if 

 0 K a   (4.15) 

Multi-solutions of Eq. (4.15) exist only when 

 d e t( ) 0K   (4.16) 

This also means structural plastic limit point. From the foregoing discussion, we can conclude again 

that for a symmetric structural tangential stiffness matrix K, the loss of structural stability coincides 

with the loss of uniqueness of the solution. For a non-symmetric tangential stiffness matrix K, the 

structural instability ( Tdet( ) 0K + K ) may occur before the loss of uniqueness ( det( ) 0K ) 

(Maier and Hueckel, 1979; de Borst et al., 1993). 
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4.2.3 Second-order work framework 

The Hill’s stability criterion has been favored in decades (Nova, 1994, 2003; Daouadji et al., 2009; 

Nicot et al., 2009; Nicot et al., 2011; Nicot and Darve, 2011; Daouadji et al., 2012; Nicot et al., 

2012a; Hadda et al., 2013; Nicot et al., 2013; Wan et al., 2013; Nicot and Darve, 2015; Hadda et al., 

2016; Nicot et al., 2017), because the authors found that the loss of uniqueness or controllability 

coincided with the vanishing of Hill’s second-order work. Nicot et al. (2007, 2009) succeeded in 

mathematically explaining the physical meaning of Hill’s criterion, and built a framework to study 

the instability based on the second-order work theory. Moreover, the second-order work theory was 

recently applied from homogenous problems to boundary value problems by Nicot et al. (2017).  

As a proposition to understand the second-order work physically, Nicot et al. (2007) introduced 

the concept of sustainability, which refers to the stability of mechanical states in the sense that any 

external perturbation at constant control variables will cause an outburst in kinetic energy growth and, 

hence, sudden collapse. Thereafter, Nicot et al. (2007, 2009) worked out from energy equations that 

there could be a loss of sustainability of equilibrium states without any incremental input in the 

external work for a certain kinematical velocity field. Based on energy conservation, this condition 

would manifest itself through a sudden outburst of kinetic energy with a transition from a quasi-static 

phase to a dynamical regime in Eq. (4.17).  

 int
2 2 2

ext
cE I W W     (4.17) 

The term on the left-hand side cE  is the second-order time derivative of the kinetic energy; the first 

term on the right-hand side 
0

2 0 0V
I dV  u  is an internal term. As a quadratic average of the 

acceleration, this term is always positive. The second term in the right-hand side 2
extW  denotes the 

external second-order work, and the third terms int
2W  is the internal second-order work. The 

increase in kinetic energy from an equilibrium state, under incremental loading, was shown to be 

equal to the difference between the external second-order work, involving the external loading 

parameters, and the internal second-order work, involving the constitutive properties of the material 

(Nicot and Darve, 2015). When the system is quasi-static, the inertial term I2 and the kinetic energy

cE are nil, the internal second-order work is equal to the external second-order work. It turned out 
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that this transition could also be mathematically expressed by the vanishing of the second-order work. 

The failure mechanism of the material was initiated at the same time as the internal second-order 

work vanishes (Wan et al., 2013). 

As a new interpretation of the second-order work, they indeed provided the relations between 

the loss of positive definiteness, loss of control, and loss of sustainability of equilibrium states 

because of incompatibility between imposed loading and material response. In this sense, the missing 

links in Hill’s pioneering publications on second-order work and its physical interpretations were 

successfully explained by Nova (1994, 2003) and Nicot et al. (2009). Following that, a synthesis on 

the second-order work from several collaborating research teams was done by Daouadji et al. (2012). 

Furthermore, Wan et al. (2013) reinterpreted the basic theory of the second-order work in a rather 

concise but clear manner by comparing high-quality laboratory experimental results with finite 

element simulations. 

4.3 Formulations of second-order work in micropolar theory 

4.3.1 General equation of second-order work 

The vanishing of the second-order work is fundamental and necessary for the collapse of the system 

to occur. Starting from an equilibrium state, and restricting problems in small deformations, the 

second-order work in local and global senses are defined as follows 

 2 :locW d d σ ε   (4.18) 

 2 :glo

V
W d d dV  σ ε   (4.19) 

, respectively. According to Hill (1958), whenever the second-order work vanishes or becomes 

negative, there is potential for material instability. At the global scale, if the negative second-order 

work pervades enough throughout the structure, it is anticipated that collapse will eventually occur 

(Wan et al., 2013). 



 

143 

 

4.3.2 Second-order work in classical continuum theory based FE analysis 

In finite element analysis, the system is discretized into numerous elements connected to each other 

by common nodes. Therefore, the local second-order work in FEM can be calculated in a single 

element i 

 2
i

iW V σε    (4.20) 

While the global second-order work can be obtained by summing all the local ones 

 2 2
1 1

( )
n n

glo i
i i

i i

W W V
 

   σε    (4.21) 

where i is the element indicator, n is the total number of elements, and Vi is the volume of element i. 

σ  and ε  are the stress and strain rate vectors, respectively. It is worth noting that in all the cases 

of instability analysis with FEM in past studies, the contributions of the micro moments and the 

corresponding curvatures to the second-order work have not been considered. 

4.3.3 Second-order work in micropolar theory based FE analysis 

Since particles’ rotations and rearrangements play significant roles in the failure of geotechnical 

structures, the micro moments and the energetically conjugated curvatures should be indispensable 

parts to the contribution of the second-order work.  

Before the introduction of the second-order work in micropolar theory, it is useful to analyze the 

contribution of the grains’ rotations to the second-order work, as it has already been examined in 

DEM. Based on the definition of particles in contact in DEM, as the contact (p-q) shown in Figure 

4-2, Nicot et al. (2012b) wrote the second-order work expression as a function of microscopic 

variables describing the granular material microstructure 

 2
,

c c p p
i i i i

p q p V

W f l f x   


     (4.22) 

where lc is the branch connecting the two centers of a contacting pair of particles in contact (p-q), f c 

is the inter-particulate contact force, f p is the resultant contact force applying on the particle p and xp 

denotes the position of the mass center of p. The first term in the right-hand side implies the contact 

force and the branch vector between the particles in contact, which can be linked to the part of the 



 

144 

 

second-order work associated to the relative displacement of particle p to particle q. The second term 

in the right-hand side denotes the contribution to the second-order work of micro-structural 

rearrangements, which should not be neglected in strain localization analysis with significant 

rotations inside the shear band. Eq. (4.22) introduces the micro-mechanical expression of the 

second-order work, which allows us to investigate, at the microscopic scale, the origin of the 

vanishing of the macroscopic second-order work.  

 
Figure 4-2 Definition of particles in contact 

Besides the DEM, the micropolar theory is also able to consider the particles’ independent 

rotations; consequently, the produced moments and micro curvatures can be taken into account. For 

two-dimensional problems, the stress and strain vectors in micropolar theory, enhanced by the micro 

moments and curvatures, have been generalized as 

 
T

xx yy zz xy yx zx c zy cl l         ε   (4.23) 

 
T

xx yy zz xy yx zx c zy cm l m l       σ   (4.24) 

Thus, in FE analysis with the implemented micropolar SIMSAND model, the second-order work in 

one element should be defined as follows 

  2
i

xx xx yy yy xy xy yx yx zx zx zy zy iW m m V                           (4.25) 

Similarly, the second-order work of the global system 2
gloW  can be obtained according to Eq. (4.21). 

4.4 Discussions of second-order work in FE analysis by simulating a biaxial test 

In this section, failure in granular media was analyzed by the second-order work from a 

fundamentally energy viewpoint. Based on the simulations of a biaxial test by the classical 
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SIMSAND model and the polarized one, the differences of second-order work in the classical 

continuum theory and micropolar theory were discussed and compared. Constitutive parameters 

referred to the calibrated ones for Ottawa sand in Appendix E-Table E-1, and the specimen size, the 

boundary conditions and the test process referred to the description in Chapter 2-section 2.4. 

Similarly, four different mesh sizes, mesh 10×20, mesh 15×30, mesh 20×40 and mesh 30×60, were 

used as before. 

4.4.1 Second-order work behind the mechanical response 

Given an equilibrium state of the system, the mechanical response is the external performance, while 

the second-order work is the intrinsic reason responding to the outward behavior. We considered a 

failure analysis in a biaxial test simulation (e.g. the classical model with mesh 10×20), and plotted 

the mechanical response and the second-order work in the same plane as shown in Figure 4-3. It can 

be observed that the vanishing of the second-order work corresponds to the peak point of the bearing 

force, and the values of the second-order work are negative in the softening regime. The degree of 

softening is also reflected by the rate of the negative second-order work. 

 
Figure 4-3 Second-order work behind the mechanical response 

F
or

ce
 (

N
)

W
2 (

J)
W

2 (
J)

W
2 (

J)
W

2 (
J)

W
2 (

J)
W

2 (
J)



 

146 

 

4.4.2 Comparisons of second-order work from classical model and polarized model 

The comparison between the second-order work calculated from the classical SIMSAND model and 

from the micropolar SIMSAND model are the subject in hand. For the same specimen (with the 

same mesh: mesh 15×30), the simulated results by the two models are presented in Figure 4-4. It can 

be observed that by considering the contribution of coupled stresses and curvatures, the vanishing of 

the second-order work in micropolar theory occurs obviously later than that from the classical 

continuum theory. As an instability criterion, the vanishing of the second-order work in both the 

classical continuum theory and the micropolar theory can predict the bifurcation point which is a 

necessary condition for a potential failure. However, for the analysis in classical continuum theory, 

the negative values of second-order work calculated from the current stress-strain state in the 

post-bifurcation regime are influenced by pathological mesh dependency solutions. After the 

regularization of the micropolar approach, the numerical solutions become corrected in the 

post-bifurcation region; consequently, the negative values of the second-order work calculated from 

the micropolar SIMSAND model are meaningful.  

 
Figure 4-4 Comparisons of the results from classical SIMSAND model and the polarized model 

It is well known that the failure can be triggered from local regions as a local instability inside 
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second-order work of the classical continuum and the micropolar continuum are presented in Figure 

4-5 and Figure 4-6. From the evolution of the second-order work of the classical continuum in Figure 

4-5, it can be observed that the local instability starts from the center of the specimen at a vertical 

displacement of 4mm, and then propagates to the corners. At a vertical displacement of 4.5 mm, the 

vanishing of the local second-order work results in the vanishing of the global second-order work as 

shown in Figure 4-4, which means the potential instability of the specimen. The complete failure can 

be found at the displacement of 5mm, showing that the vanishing of the local second-order work 

penetrates within the specimen. Moreover, the failure regions in the classical continuum are 

relatively narrow with a thickness of one element size. Figure 4-6 shows the similar evolution of the 

vanishing of the second-order work of the micropolar continuum. However, some obvious 

differences can be easily found. The failure regions of the micropolar continuum are larger than those 

of classical continuum. The reason is that in the micropolar continuum, the thickness of the shear 

band is controlled by the internal length rather than the element size. Besides the delay of the 

vanishing of the global second-order work compared to the classical continuum (see Figure 4-4), the 

complete penetration of the vanishing of the local second-order work is also delayed at a vertical 

displacement of about 7 mm. Afterwards, the shear bands with a finite thickness can be identified by 

the vanishing of the local second-order work. To some sense, the localized regions can be also 

defined by the domains of the vanished local second-order work, which affects significantly the 

global mechanical response. 

 

Figure 4-5 Evolution of the second-order work in the classical continuum: (a) vertical displacement of 4 mm; (b) 

vertical displacement of 4.5 mm; (c) vertical displacement of 5 mm; (d) vertical displacement of 5.8 mm  
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Figure 4-6 Evolution of the second-order work in the micropolar continuum: (a) vertical displacement of 5.5 mm; 

(b) vertical displacement of 6 mm; (c) vertical displacement of 7 mm; (d) vertical displacement of 10mm  

4.4.3 Mesh dependency analysis of classical model by the second-order work 

First, for the investigation of the second-order work in the classical continuum, we consider the four 

different meshes, mesh 10×20, mesh 15×30, mesh 20×40 and mesh 30×60.  

The envelope diagrams of the vanishing of the second-order work at the end of the calculation 

for different meshes are shown in Figure 4-7, which can be used to denote the failure regions. We can 

find that the failure regions identified by the vanishing of the second-order work are dependent on 

the discretization. For mesh 10×20 and mesh 15×30, the calculations could be finished; however, the 

shear band of mesh 10×20 is obviously thicker than that of mesh 15×30. For the relatively fine 

meshes, mesh 20×40 and mesh 30×60, the envelope diagrams of the vanishing of second-order work 

just appeared at the center of the specimen, and could not propagate to the corners due to the 

difficulty of convergence in the vicinity of the bifurcation in classical continuum theory based FE 

analysis. 
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Figure 4-7 Instability regions identified by second-order work of different meshes in classical continuum: (a) mesh 

10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60 

Figure 4-8 presents the evolutions of the mechanical response and the global second-order work 

for different meshes, showing also obvious mesh dependency. For mesh 30×60, the vanishing of the 

global second-order work is not reached because of numerical difficulties, which can also be found 

from the force-displacement curve. For mesh 20×40, the calculation becomes not convergent just 

after the vanishing of the second-order work. According to the figure, we can see that the 

second-order work vanishes at different vertical displacement for different mesh sizes, a coarse mesh 

having a later vanishing of the global second-order work; consequently, the mechanical responses for 

different meshes are also different.  

 
(a)
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Figure 4-8 Comparisons of different meshes in a classical continuum: (a) mechanical responses; (b) evolutions of 

the second-order work 

In conclusion, in the failure analysis using a classical theory based model, either the numerical 

calculation has to be stopped caused by convergence problems or the numerical solutions are 

pathologically dependent on the discretized element size. Thus, the negative values of the 

second-order work from the classical model are also mesh dependent; consequently, the instable 

envelope diagrams by the vanishing of second-order work are not objective. 

4.4.4 Mesh independency analysis of micropolar model by the second-order work 

Then, the second-order work in the micropolar continuum is investigated. According to the 

regularization effective ratio defined in Chapter 3-section 3.4, the three relative fine meshes, mesh 

15×30, mesh 20×40 and mesh 30×60, which satisfy the effective ratio, are used for simulation by the 

micropolar SIMSAND model. Compared to the results from the classical model, significant 

improvements can be observed in Figure 4-9 and Figure 4-10. 

With the regularization of micropolar approach, no convergence difficulty was encountered for 

all the different meshes, and all the calculations proceeded from beginning to end. From Figure 4-9, 

it can be observed that the failure regions identified by the envelope diagrams of the vanishing of 
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second-order work in the micropolar continuum are nearly the same. So the mesh dependency 

problems have been efficiently relieved. 

 

Figure 4-9 Instability regions identified by second-order work of different meshes in micropolar continuum: (a) 

mesh 15×30; (b) mesh 20×40; (c) mesh 30×60 

Furthermore, the mesh independency of the mechanical responses and the global second-order 

work evolution for the three different meshes can also be found in Figure 4-10, indicating that the 

vanishing of the second-order work occurs at the same vertical displacement regardless of the 

discretization. Moreover, the three curves coincide with each other even after the vanishing of the 

second-order work corresponding to the consistent force–displacement curves after the bifurcation 

point. Considering that the micropolar theory can preserve the ellipticity (for static problems) of the 

partial differential governing equations after the onset of bifurcation, consequently, the second-order 

work in the post-failure regime of the micropolar continuum is still meaningful and can be used not 

only to detect the bifurcation point but also to reflect the tendency of the mechanical response after the 

bifurcation point. 
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Figure 4-10 Comparisons of different meshes in a micropolar continuum: (a) mechanical responses; (b) evolutions 

of the second-order work 

If the vanishing of the second-order work from classical and micropolar results are compared 

based on Figure 4-8 and Figure 4-10, we can see that the bifurcation points in the micropolar 

continuum are significantly delayed. Owning to the incorporation of the rotational degree of freedom 

and the internal parameter with a microstructural length scale, the conventional definition of the 

(a)

(b)
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second-order work has been generalized to consider the contribution of couple stresses and the 

conjugated curvatures, which leads to the delay of the vanishing of the second-order work. 

4.4.5 Discussions of the contribution of micro rotations to the second-order work 

As has been illustrated in the previous section, the contribution of the couple stresses and the micro 

curvatures should be responsible for the delay of the vanishing of the second-order work. Therefore, 

in order to investigate the role that the micro rotations played on the second-order work, the 

second-order work of a micropolar continuum is divided into two parts, the part calculated from the 

conventional Cauchy stresses and strains and another part calculated from the couple stresses and 

micro curvatures. 

Significant grain rotations have been observed to occur inside the shear band, and it has been 

found that the rotations of grains changed from clockwise to anticlockwise in the centerline of the 

shear band. In this sense, the highest rotations are located at the edge of the strain localization 

regions. Consequently, it is believed that larger contributions of the couple stresses and micro 

curvatures to the second-order work should also be located at the edge of the shear band, which can 

be obviously verified by the contour of the rotational part of the second-order work in the sample as 

shown in Figure 4-11. Therefore, for the local analysis of the components of the second-order work, 

an element at the edge of a shear band (based on micropolar model: mesh 15×30) is chosen as shown 

in Figure 4-12. 

 

Figure 4-11 Contribution of the grains rotations to the second-order work 
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Figure 4-12 Selecting an element for local analysis of the components of the second-order work 

The second-order work of the element and its two parts, the conventional part based on Cauchy 

stresses and strains and the rotational part based on couple stresses and micro curvatures, are plotted 

in Figure 4-13. In Figure 4-13, W2 micropolar denotes the total second-order work of the micropolar 

continuum, W2 Cauchy stress and W2 Couple stress represent the conventional part and the rotational 

part of the total second-order work, respectively. We can see that the rotational part contributes 

significantly to the second-order work and, because of its positive value, the vanishing of the local 

second-order work is obviously delayed. 

 
Figure 4-13 Components of the second-order work of a local element 

Similarly, in Figure 4-14 the global second-order work of the specimen (based on micropolar 

model: mesh 15×30) is also divided into two parts, corresponding to the conventional part and 

rotational part, respectively. It is also found that the contribution of the couple stresses and 

curvatures in the micropolar continuum delays slightly the vanishing of the global second-order work. 
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It is worth noting that at the global scale the contributions from micro moments and curvatures are 

relatively small compared to classical Cauchy stresses and strains, because the rotations of the grains 

in most regions outside the shear bands are very small; consequently, the global rotational part does 

not contribute much to the global total second-order work. However, the rotational degree of 

freedom and the internal length scale in the micropolar theory based models have great influence 

within the strain localized domains. Thus, the mechanical response or the evolution of the 

second-order work of the micropolar continuum is very different from that of a classical continuum. 

 

Figure 4-14 Components of the global second-order work  

4.5 Application of the second-order work in the analysis of a retaining wall 

The numerical analyses of a retaining wall under passive condition with the finite element method by 

both the classical SIMSAND model and the micropolar SIMSAND model have been conducted in 

chapter 2, which illustrated well the regularization ability of the micropolar approach in relieving the 

mesh dependency problems faced with the classical continuum theory based model. In this section, 

the vanishing of the second-order work for different mesh sizes within the framework of the classical 

continuum theory and of the micropolar theory was used to investigate the failure of the soil mass 

behind a retaining wall, which are presented, respectively, in Figure 4-15 and Figure 4-16. 

Rotational part delays 
the vanishing of W2
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Figure 4-15 Failure zone of the soil mass behind the wall identified by the vanishing of the second-order work of 

different mesh sizes in a classical continuum: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 40×20 

 
Figure 4-16 Failure zone identified by the vanishing of the second-order work of different mesh sizes in a 

micropolar continuum: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 40×20 
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From Figure 4-15, it can be seen that the regions of the vanishing second-order work are seriously 

dependent on the element size, the finer the element size is, the narrower the thickness of the region of 

the vanishing second-order work will be. Moreover, the envelopes of the vanishing of the second-order 

work for the three mesh sizes based on the classical continuum theory are rough and fluctuant, which 

means the instability of the calculation by the classical model. In contrast, the envelops of the 

vanishing of the second-order work for the three different mesh sizes based on the micropolar theory 

are showed in Figure 4-16, from which it can be seen that the thicknesses of the three failure regions 

identified by the vanishing of the second-order work are nearly the same, and the envelopes of these 

regions are smoother and regular. Accordingly, the generalized second-order work can not only reflect 

the regularization effectiveness of the micropolar theory but also characterize the potential instable 

regions regardless of the element size. 

4.6 Conclusions 

In this chapter, the instability criteria closely related to material and structure failures were reviewed. 

Focuses have been laid on the second-order work proposed by Hill (1958), based on which Nicot et 

al. (2007, 2009) have succeeded in building a framework to study the instability. Then, the 

formulations of the second-order work criterion in micropolar theory has been derived and its 

applications have been investigated by simulating the failure of the specimen in biaxial test and a 

retaining wall. 

It is well known that the second-order work is the intrinsic factor responding to the external 

mechanical response, therefore, the regularization role of the micropolar theory was illustrated from 

an energy point of view by the second-order work criterion. According to the simulated results, it can 

be concluded that the vanishing of the second-order work in both the classical continuum and the 

micropolar continuum can predict the bifurcation point. However, the bifurcation point in classical 

continuum is dependent on the discretized mesh size. In the post-bifurcation regime, the negative 

values of the second-order work based on the classical model become meaningless because of the 

pathological numerical solutions. In contrast, the mesh dependency problems can be effectively 

overcome by the regularization in micropolar theory. Because of the incorporation of a rotational 
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degree of freedom and an internal length scale, the bifurcation point in the micropolar continuum is 

significantly delayed. Moreover, in the shear band zones with great rotations of grains, the couple 

stresses and curvatures contribute a lot to the second-order work and delay significantly the 

vanishing of the second-order work. Global failure is the developed result of the local failure, 

therefore, the envelope diagrams of the vanishing of the second-order work are very physically 

meaningful to represent the failure regions, and thus to obtain the correct failure domains in the 

micropolar continuum regardless of the mesh size. 
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Chapter 5 Extension of the micropolar model from 2D to 3D  

5.1 Introduction 

The aforementioned research based on micropolar theory focuses chiefly on two-dimensional plane 

strain problems. However, most actual engineering structures belong to the three-dimensional 

domain. Accordingly, extension of the current two-dimensional micropolar model to make it 

three-dimensional is needed. Recently, some researchers have formulated a framework for the 

three-dimensional micro polar model, and several numerical simulations have also been conducted 

with it (Khoei et al., 2010; Riahi et al., 2009; Riahi and Curran, 2009; Tang and Hu, 2017) , but a 

more advanced constitutive model for sand with the notion of critical state has never been 

generalized from 2D to 3D. 

In this chapter, a three-dimensional finite element formulation of a micropolar continuum was 

first presented. After that, the user-defined element within the framework of the micropolar theory 

was derived and developed via the interface of the commercial finite element software ABAQUS. 

Finally, the finite element implementation of the 3D critical state–based micropolar model for 

granular soils was demonstrated. To validate the correctness of the 3D micropolar SIMSAND model, 

a series of test simulations, including triaxial and biaxial drained and undrained tests for dense and 

loose sand, was conducted and compared in terms of the results obtained through use of the 

integrated point program (IPP) and the 3D micropolar model. Furthermore, numerical simulations of 

boundary value problems have been conducted using the 3D micropolar model and validated through 

comparison of results from the 2D model. Finally, the regularization effectiveness of the 3D model 

when dealing with mesh dependency problems was discussed. 

5.2 Framework of the 3D micropolar theory 

5.2.1 Equilibrium formulations 

According to Mindlin and Tiersten (1962), the conservation of mass, balance of momentum, moment 

of momentum, and conservation of mechanical energy for a micropolar continuum must be satisfied. 
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Figure 5-1 depicts the motion of a portion V of a material volume, bounded by a surface S with 

outward normal n. S separates the portion of a material volume V from the remainder. Across S act 

force stress and couple stress vectors tn and mn, respectively, and within V act body–force and body–

couple vectors f and c, respectively. Force stress vector tn and body–force vector f are polar vectors, 

whereas the couple stress vector m and the body–couple vector c are axial vectors. Axial vectors are 

taken to be positive in the direction of advance of a right-handed screw.  

 

Figure 5-1 Forces stresses and couple stresses acting on a micro polar portion 

Then the equilibrium equations, including conservation of mass, balance of momentum, 

moment of momentum, and conservation of mechanical energy are formulated, respectively, as 

 0
V

d
dV

dt
    (5.1) 

 n

V S V

d
dV dS dV

dt
    v t f   (5.2) 
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where 
d

dt
 is the material time-derivative,  is the mass density, r is the spatial position vector from 

a fixed origin, v is the material velocity 
d

dt

r
, U is the internal energy per unit mass,   is the 

special gradient 
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r
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Consideration of the equilibrium of forces acting on the elementary tetrahedron, as the volume 

of the tetrahedron shrinks to zero, leads to the definition of the usual force stress dyadic : 

 n  t n σ   (5.5) 

An analogous treatment of the equilibrium of moments acting on the tetrahedron yields the definition 

of the couple stress dyadic m: 

 n  m n m   (5.6) 

From Eq. (5.2), we have 

 n

S S V

dS dS dV     t n σ σ   (5.7) 

According to the divergence theorem, combining Eq. (6.1), Eq. (6.2), and Eq. (6.7) gives 

   0
V

dV    σ f v   (5.8) 

This allows the usual force stress equation of motion to be obtained: 

   σ f v   (5.9) 

The left and right side of Eq. (5.3) can be also formulated: 

 
   
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 

   

n

S S S

S V

dS dS dS

dV dV

       

            

  

 

r t r n σ n σ r

σ r r σ σ I
  (5.11) 

 n

S S V

dS dS dV     m n m m   (5.12) 

where I is the unit spatial dyadic. Hence Eq. (5.3) becomes 

     0
V V

dV dV          r σ f v m c σ I   (5.13) 

From Eq. (6.9) and Eq. (6.13), we can get the couple stress equation of motion: 

     m c σ I   (5.14) 

The force stress σ  can be divided into a symmetric part and an antisymmetric part: 
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 A S σ σ σ   (5.15) 

The antisymmetric part of σ  is  1

2
A   σ I σ I

 . Hence 

  1

2
A    σ I m c   (5.16) 

Substituting Eq. (5.15) and Eq. (5.16) into Eq. (5.9), we find an alternative form of the equation of 

motion: 

 
1 1

2 2
S       σ m f c v   (5.17) 

For the equation of conservation of mechanical energy, the left and right side can be also formulated: 
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Thus Eq. (5.4) can be written as 

    1 1
: :

2 2V V

UdV dV                  σ f v v m c v σ v m v    (5.21) 

Combining Eqs. (5.9), (5.14), (5.16), and Eq. (5.21) produces 

 
1

: :
2

SU    σ v m v   (5.22) 

Because the scalar of   v  also equals zero, the right-hand side of the preceding equation can be 

written as 

 
1

: :
2

S DU    σ v m v   (5.23) 

where mD is the deviator of m: 
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1

:
3

D  m m m II   (5.24) 

Furthermore, because  : 0    II m , Eq. (5.17) can be also written as 

 
1 1

2 2
S D       σ m f c v   (5.25) 

From the foregoing formulations of balance of momentum, moment of momentum, and conservation 

of mechanical energy for a micropolar continuum, we find that the antisymmetric part of the force 

stress and the scalar of the couple stress do not contribute to the internal energy and the equation of 

motion and are instead indeterminate—a peculiarity of the micropolar equation. 

5.2.2 Kinematics formulations 

5.2.2.1 Deformation of a micropolar continuum 

In this section, a brief introduction of the kinematical relations of a micropolar continuum is 

presented with reference to the publications of Eringen (1999) and Altenbach (2012). To describe the 

motion of a micropolar particle, this particle is assumed to be endowed with six degrees of freedom. 

Three of the degrees of freedom are translational as in classical elasticity, and other three degrees are 

orientational or rotational: 

 
T

x y z x y zu u u      u   (5.26) 

In the actual configuration χ at instant t, the position of a particle on the micropolar continuum 

is given by the position of vector r. The particle orientation is defined by an orthonormal trihedron dk 

(k = 1, 2, 3) whose vectors are called directors. The two vectors r and dk define the translational and 

rotational motions of a particle, respectively. 

To describe the relative deformation, a fixed position of the body, which may be taken at t = 0 

or another fixed instant, should be referred to as the reference configuration. Herein, the referred 

state of a particle is defined by the position vector R and its orientation directors Dk (see Figure 5-2). 

It should be noted that the reference configuration need not be chosen at the initial state; any time 

will suffice. 
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Figure 5-2 Deformation of a micro polar continuum 

The motion of a micropolar continuum can be described by the following vectorial fields: 

 k k( , t) , ( , t) r r R d d R   (5.27) 

During the deformation, the trihedron dk stays orthonormal at dk·dm = δkm. The change of the 

directors can thus be described by an orthogonal tensor: 

 k k H d D   (5.28) 

H is called the microrotation tensor. Thus r describes the position of the particle of the continuum at 

time t, whereas H defines its orientation. The orientations of Dk and dk can be selected identically so 

that H is properly orthogonal. Hence the micropolar continuum deformation can be described by the 

following relations: 

 ( , t) , ( , t) r r R H H R   (5.29) 

The linear velocity is given by the relation 

 v r   (5.30) 

The angular velocity vector, also called the micro-gyration vector, is given by 

  1

2
T


  ω H H   (5.31) 

Eq. (5.31) means that ω is the axial vector associated with the skew symmetric tensor
T H H. 
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5.2.2.2 Microrotation of a micropolar continuum 

The most general form representing micropolar rotation has been proposed as 

   exp spnc R ω   (5.32) 

 can be also expressed by 

 i ieω   (5.33) 

where ei is the ith component of the base vector and rotation angle  is defined as 

   ω   (5.34) 

The skew symmetric tensor associated with the axial vector is expressed by 

  
3 2

3 1
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 
 
 

 
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  

ω e ω   (5.35) 

where e is the permutation symbol. The mathematical expansion of the rotation tensor is 

           
2

sin 1 cos
exp spn cos spnc  


 


    R ω I ω ω ω  (5.36) 

In a small rotation framework, the rotation matrix, Rc, is approximately expressed by 

  
3 2

3 1

2 1

1

spn 1

1

c

 
 
 

 
     
  

R I ω   (5.37) 

5.2.2.3 Strain and micro-curvature of a micropolar continuum 

For a three-dimensional micropolar point, the microrotation can result in the production of 

micro-torsion curvature in the corresponding axis and micro-bending curvatures in other two axes. 

Thus there are a total of 18 components in the generalized strain vector , 

 
T

xx yy zz xy yx yz zy zx xz xx t yy t zz t xy b xz b yx b yz b zx b zy bl l l l l l l l l                    ε  (5.38) 

in which lb and lt are two new added micro–length scale parameters. lb and lt are related to the 

bending couple stress and the torsion couple stress, respectively. 

The micropolar strain can be formulated in indicial notation as 

 ,ij j i ijk ku e     (5.39) 
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Micro-curvature is a third-order tensor and is mathematically defined as 

 
,

c c
ijs ik ik sR R    (5.40) 

Because the third-order curvature is antisymmetric with respect to the interchange of the first two 

indices, it can be reduced to a second-order tensor per the following notation: 
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Substituting Eq. (5.37) in the above equation and ignoring any higher-order terms of rotation 

supplies the second-order curvature tensor: 
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  (5.42) 

Thus the micropolar strain and micro-curvature components in (x, y, z) coordinate space can be 

expressed by 
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  (5.43) 

5.2.3 Force stress and moment stress of a micropolar continuum 

Similarly, there are also a total of 18 components in the generalized stress vector . Apart from the 

components identical to the classical ones, the stress vector also includes the micro-couple 

components (moments) energetically conjugated with the micro-bending and torsion curvatures: 
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σ   (5.44) 

Figure 5-3 shows all the stress components acting on a 3D micropolar continuum. The first 

subscript of the force stress refers to the direction of the surface normal pertinent to the surface on 
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which the force stress acts. The second subscript of the force stress refers to the direction on which 

the stress acts. The first subscript of couple stress refers to the axis around which it rotates, whereas 

the second subscript denotes the surface on which the couple stress acts. 

 

Figure 5-3 Stress components acting on a 3D micro polar continuum 

5.2.4 Constitutive equations for a micropolar elasticity 

In the constitutive relations of a 3D micropolar elasticity, two assumptions have been made: first, 

there is no coupling between the force stress and couple stress components; second, to relate couple 

stress to curvature, there is no interaction between bending and torsion couple stresses. Just as with 

classical constitutive relations, the generalized strain vector and stress vector are related by the linear 

elastic operator De, 

  eσ Dε  (5.45) 

where De is defined by 
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Removing the interaction between force stress and couple stress so that Du = Du = 0, the remaining 

two submatrices are formulated as (Liu et al., 2007; Khoei et al., 2010; Tang and Hu, 2017) 
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and 
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with the Lame constant 2 / (1 2 )G   ; G and are the classical shear modulus and Poisson’s ratio, 

respectively. Gc denotes the micropolar shear modulus. 

5.3 Finite element formulations 

5.3.1 Equilibrium equations 

The equilibrium governing equations in micropolar theory can be written in the indicial notation 

forms 
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  (5.49) 

where f and c denote the body force and body couple moment, and  and m are the micro polar force 

stress and micro couple stress, respectively. The first sub-equation is completely analogous to the 
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equilibrium equation of classical continuum, and the second sub-equation is the additional condition 

for a micropolar continuum. 

5.3.2 Kinematics equations 

The relations between the generalized deformation vector and strain vector in Eq. (5.43) can be 

connected by an operator matrix L 

 ε Lu   (5.50) 

where the operator matrix L is defined as 
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in which L1 and L2 are formulated as 
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5.3.3 Finite element discretization 

To avoid the volumetric locking associated with incompressible materials and the hourglass 

phenomenon caused by reduced integration in the low-order cubic element (Reduced integration 
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does not work in 4 noded quadrilateral elements or 8 noded brick elements. The error occurs because 

the stiffness matrix is nearly singular and the system of equations includes a weakly constrained 

deformation mode. This phenomenon is known as ‘hourglassing’ because of the characteristic shape 

of the spurious deformation mode (Bower, 2009)), the cubic solid element of higher order shown in 

Figure 5-4 has been adopted. Because the higher-order element has a higher level of continuity, it 

performs well when simulating incompressible and nonlinear materials, in this way, it is suitable to 

simulate the strain localization phenomena in boundary value problems (Brown, 1997; Schwarzbach 

et al., 2011; Belytschko et al., 2013).  

 

Figure 5-4 Element of 3D micro polar continuum: (a) 20-node solid element; (b) integration points 

For the 20-node cubic isoparametric element depicted in Figure 5-4, each node possesses six 

degrees of freedom: three translational and three rotational. The displacements and rotations of the 

element can be calculated by the interpolation approximation of all the nodes 

  eu Nδ   (5.53) 

where N is the interpolation function matrix:  
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The shape function of each node in Figure 5-4 is expressed in the space of the natural coordinates: 
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and eδ  is the generalized displacement vector: 
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Accordingly, we have 

   e eε Lu LΝδ Bδ   (5.57) 

where B = LN is the strain matrix. 

The total potential energy of a structure is formulated as the summation of all elements, 
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where f is the body force vector in the inner of the element and T is the surface force vector exerted 

on the boundary. Based on the minimum potential energy principle and the randomness of the virtual 

displacement, the partial differential 0p


 eδ
 must be satisfied, after which the discretized 

governing field equations of finite element analysis can be obtained, 

 e eeK δ P   (5.59) 

with the element stiffness matrix Ke and element node load vector Pe expressed as 
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Finally, the Newton–Raphson technique is used to fulfill the static equilibrium iteration of the 

nonlinear problems, and the Gauss integration method is adopted when performing the integral 

operation. Take the element stiffness matrix, for example, 
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in which m = n = l = 2, Hi, Hj, and Hk are the corresponding weight factors of each integration point 

and the Jacobian matrix is expressed as 
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5.4 FE implementation of the 3D critical state–based micropolar model 

Compared with the initial SIMSAND model, the stress and strain invariants in the 3D micropolar 

SIMSAND model have been augmented by considering micro-curvatures and corresponding 

energetically conjugated couple stresses. According to de Borst et al. (1987; 1991; 1991), the strain 

and stress invariants can be formulated as 
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where p
ije is the plastic deviatoric strain rate tensor, p

ij is the plastic micro-curvature rate tensor, sij is 

the deviatoric stress tensor, mij is the micro-moment tensor, and the internal length scale parameter lc 

can be either lt or lb. The summation convention for repeated indices has been adopted. In the 

absence of microcurvatures and the energetically conjugated couple stresses—that is, 0p
ij  , p p

ij jie e   

and mij = 0, sij = sji—the strain and stress invariants are expressed as 
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  2 1 2 ij ijJ a a s s    (5.66) 

To ensure proper retrieval of the classical continuum expressions for the invariants, the choices a1 = 

a2 = 1/4, a3 = 1/2 and b1 = b2 = 1/3, b3 = 2/3 have been used in most cases (de Borst, 1990; de Borst, 

1991; de Borst and Sluys, 1991). Thus the deviatoric stress q in the 3D micropolar SIMSAND model 

should be calculated by the new stress invariant
23J . To arrive at a compact matrix–vector notation, 

the formulation of q is expressed as 
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where P is the plastic potential matrix (Li and Tang, 2005; Khoei et al., 2006; Khoei et al., 2010): 
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where P1, P2, and P3 can be expressed as 
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Similarly, the equivalent plastic strain p
d  can be expressed in a compact matrix–vector notation as 
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where matrix Q is defined as 
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where Q1, Q2, and Q3 can be expressed as 
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  (5.72) 

As can be seen from the foregoing formulations, when extending a classical constitutive model to a 

micropolar model at stress–strain level, the stress and strain vectors need merely to be augmented to 

incorporate the micro-moment stresses and microcurvatures. Consequently, the stress and strain 

invariants also need to be defined based on generalized stress and strain components. For the 

particular SIMSAND model, only the second stress invariant J2 and second plastic strain invariant p
d
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should be redefined, but in some constitutive models, including the third stress invariant J3, J3 should 

be also redefined as (Liu et al., 2007) 

  3

1

3 ij jk ik ij jk ikJ s s s m m m    (5.73) 

When conducting numerical simulations with the micropolar model, if the independent 

rotational degrees of freedom are constrained, all the micro-qualities become null values, and the 

micropolar model is retrieved to the classical one. The 3D polarized SIMSAND model has been 

numerically implemented via the user-defined element introduced in the previous section. For the 

integration algorithm within the constitutive model, the cutting plane technique was also adopted as 

illustrated in detail in chapter 2. 

5.5 Numerical simulations and discussions 

5.5.1 Element validation 

To ensure the correctness of the three-dimensional user-developed element and the polarized 

elastoplastic model, element validation is essential. In this section, simulations of drained and 

undrained triaxial tests and drained and undrained biaxial tests for both loose and dense Toyoura 

sand were conducted using the 3D micropolar SIMSAND model, which were compared and verified 

by the results from IPP. The comparisons were presented hereafter, from Figure 5-5 to Figure 5-8. In 

the comparing figures, each subfigure denotes a relationship: (a) axial strain versus deviatoric stress, 

(b) mean effective stress versus deviatoric stress, (c) axial strain versus void ratio, (d) mean effective 

stress versus deviatoric stress. From the comparisons, it could be found that the simulated results 

obtained from 3D micropolar SIMSAND model coincide exactly with those obtained through IPP, 

proving the correctness of the implementation of the 3D polarized model. Note, however, that the 

micropolar quantities were nulls in element tests. 
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Figure 5-5 Comparisons between IPP and 3D UEL in simulating triaxial drained test 

 

Figure 5-6 Comparisons between IPP and 3D UEL in simulating triaxial undrained test 
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Figure 5-7 Comparisons between IPP and 3D UEL in simulating biaxial drained 

 

Figure 5-8 Comparisons between IPP and 3D UEL in simulating biaxial undrained 
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5.5.2 Boundary value problems in plane strain condition 

We know that in element tests, all simulations are confined in a homogeneous state without strain 

localization phenomena. However, micro polar technique can be activated only with the onset of 

strain localization, which is accompanied by particle rotations in the strain-localized region and a 

lessening of the structure’s strength. Accordingly, simulations of strain localization phenomena in 

boundary value problems, such as shear bands in biaxial tests, should be performed with the 3D 

micropolar SIMSAND model. 

To validate the correctness, the simulations of biaxial tests as had been done in previous Chapter  

were conducted again within a three-dimensional framework by the polarized SIMSAND model, and 

all material parameters were kept the same as those used in a 2D condition. In these simulations, the 

three internal length scale parameters were set the same: lb = lt = lc. 

In doing so, the conditions of the biaxial test were revisited. A specimen, with a width of 10 cm, 

a height of 20 cm, and a thickness of 1 cm, was considered—different from that seen in the 

two-dimensional condition, in which the default thickness is 1 m. The test included two steps, and 

the mixed loading control was adopted. The first step was isotropic compression with a confining 

pressure of 100 kPa, and the second was shear loading produced by controlling the displacement of 

the top surface (up to a total axial strain of 5%). To trigger the strain localization easily, the lateral 

deformations of the top and bottom surfaces of the specimen were constrained. 

5.5.2.1 Mesh dependency using the classical SIMSAND model 

Considering that there is no obvious shear band in the 30×60×1 mesh as a result of poor convergence 

within the framework of classical continuum theory, shear bands identified by the equivalent plastic 

strain distribution of three different discretizations—mesh sizes of 10×20×1, 15×30×1, and 

20×40×1—are shown in Figure 5-9, with the corresponding load versus displacement curves plotted 

in Figure 5-10. From the contours and the load–displacement curves, it can be found that the 

simulations for relative coarse meshes, such as 10×20×1 and 15×30×1, are completely finished, 

whereas the calculation stops just after the onset of bifurcation point for a fine mesh of 20×40×1. The 

bearing peak of the coarse 10×20×1 mesh is slightly higher and more delayed than the others. 
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Additionally, the specimen displays a stiffer behavior during the softening regime with a coarse mesh 

than that with a fine mesh. All the observations obtained using a 3D framework are in accordance 

with those by using a 2D framework, indicating the presence of serious mesh dependency problems 

for a classical continuum when simulating strain localization problems. 

 

Figure 5-9 Shear bands of three different mesh sizes using the 3D classical model: (a) mesh 10×20×1; (b) mesh 

15×30×1; (c) mesh 20×40×1 

 

Figure 5-10 Load–displacement of three different mesh sizes using the 3D classical model 
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5.5.2.2 Mesh independency using the 3D micropolar SIMSAND model 

To demonstrate the regularization capability of the micropolar technique, the same simulations of 

biaxial tests as in previous section were conducted once more using the 3D polarized model, with the 

parameters kept the same as before and the two newly incorporated length scale parameters lb = lt = lc 

and the micro polar shear modulus Gc was set identically to the one in the 2D condition. The shear 

bands identified by plastic strain for four different discretizations are shown in Figure 5-11. Unlike 

for calculations within the framework of classical continuum theory, all four simulations could be 

entirely finished without any numerical convergence problem, and from a first glimpse at shear band 

thickness, the mesh independency for the four different discretizations is found easily. Load–

displacement curves for the four simulations are presented in Figure 5-12, showing that the pink 

curve of mesh 10×20×1 is a little stiffer than the other three curves during the softening regime. 

However, the load–displacement curves of the other three fine meshes coincide with each other and 

display mesh independency. In this sense, the existence of the effective regularization ratio of 

internal length to element size is verified again. 

 

Figure 5-11 Shear bands of four different mesh sizes using the3D micropolar model: (a) mesh 10×20×1; (b) mesh 

15×30×1; (c) mesh 20×40×1; (d) mesh 30×60×1 
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Figure 5-12 Load–displacement of four different mesh sizes using the3D micro polar model 

5.5.2.3 Influence of the internal length scales 

The incorporation of the internal length scale is required to preserve the ellipticity of the partial 

differential equations for boundary values problems. Through the regularization mechanism of the 

micro polar approach, the mesh dependency problems have been amply solved. Undoubtedly, the 

internal length scales will greatly influence the material behavior as well as the shear band pattern. 

Shear band contours with the fixed mesh size for a classical continuum and a micropolar 

continuum with three different values of the internal length scales are shown in Figure 5-13 (lb = lt = 

lc). The relatively thin shear bands are observed for a zero or small internal length, whereas the shear 

bands are thicker for the larger internal length scales. 
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Figure 5-13 Influence of internal length scale lc on shear band thickness: (a) lc = 0mm; (b) lc = 1mm; (c) lc = 1.5mm; 

(c) lc = 2mm; 

 

Figure 5-14 Influence of internal length scale lc on load–displacement curves 

The load–displacement curves of four different lc with a fixed mesh size (mesh 15×30×1) have 

been illustrated in Figure 5-14. The load–displacement curves show that the load peak depends on 

the internal length scale and increases with lc. In addition, larger values of lc require a larger axial 

strain to arrive at the peak load, indicating that the increased lc is able to delay the bifurcation point 

of a structure. During the softening stage, material having a larger lc also demonstrates stiffer 

behaviors. 
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5.5.2.4 Validation of the simulated results 

According to the simulated results heretofore related, the 3D micropolar model has demonstrated a 

significant ability to overcome convergence difficulties and alleviate mesh dependency problems. 

However, these results can be persuasive only after validation. The correctness of the 3D micropolar 

model is validated by comparing the results from the 2D micropolar, which are assumed to be right 

ones by default.  

First, the results from the retrieved classical model should be compared. The shear bands using 

a 2D classical model for three different mesh sizes are shown in Figure 5-15, allowing us to note that 

the shear band patterns from a 3D model, shown in Figure 5-9, are precisely the same as these 

obtained by using a 2D model. The comparisons of the load–displacement curves between 2D and 

3D classical models are presented in Figure 5-16, showing that the curves from the 3D model 

coincide exactly with those from the 2D model. Notably, the strength of the 3D model should be 

multiplied by 100 considering the unit depth (100 cm) of 2D models.  

 

Figure 5-15 Shear bands of three different mesh sizes using the 2D classical model: (a) mesh 10×20; (b) mesh 15×30; 

(c) mesh 20×40 
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Figure 5-16 Comparisons of load–displacement curves between 2D and 3D classical SIMSAND model  

Second, the results obtained by using the micropolar model should be validated. The shear 

bands obtained by using a 2D micropolar model for four different mesh sizes are shown in Figure 

5-17, allowing us to note that the shear bands obtained by using a 3D micropolar model, shown in 

Figure 5-11, are identical to those obtained by using a 2D model. The comparisons of the load–

displacement curves between 2D and 3D micropolar models are presented in Figure 5-18, which 

indicates that the curves from 3D and 2D micropolar models are consistent with each other and are 

all also mesh-independent. 

 

Figure 5-17 Shear bands of four different mesh sizes using the 2D micro polar model: (a) mesh 10×20; (b) mesh 

15×30; (c) mesh 20×40; (d) mesh 30×60 



 

185 

 

 

Figure 5-18 Comparisons of load–displacement curves between 2D and 3D micropolar SIMSAND model 

5.5.3 Boundary value problems in a real 3D condition 

To illustrate the regularization effectiveness of the 3D polarized SIMSAND model, a real 3D 

problem was simulated in this section. The geometry and the boundary conditions of the model were 

presented in Figure 5-19(a), showing a vertical cut of 10×10×10 cm was subjected to the prescribed 

loading in y direction at its corner on the top surface. The loading was controlled by the incremental 

displacement of a rigid square panel of 2.5×2.5 cm, which was roughly located on the corner. All the 

translational and rotational degrees of freedom of the bottom side were fixed totally, while two side 

surfaces on the left side and back side were restrained in their perpendicular directions. Accordingly, 

a localized region would form under the panel as shown in Figure 5-19(b). All the material 

parameters were referred to the calibrated ones from Ottawa sand in Appendix E, with the internal 

length scales lb = lt = lc = 1mm and micropolar shear modulus Gc = 0.5G.  
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Figure 5-19 Boundary conditions and final schematic of the model 

5.5.3.1 Simulations using the classical 3D model 

First, the simulations were conducted within the framework of classical continuum mechanics. Three 

different mesh sizes—16×16×16, 20×20×20, 24×24×24—were adopted. The strain localized 

regions identified by the equivalent plastic strain were shown in Figure 5-20. It was evident that the 

width of shear band was determined by the element size. Similarly, the mesh dependency problems 

of the classical model could also be illustrated by the load-displacement curves of three different 

simulations. Although the differences of the three different element sizes were not so large, the 

load-displacement curves in post-peak regime still could not coincide with each other. 

 

 

Figure 5-20 Shear bands in 3D foundations using classical model 
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Figure 5-21 Load-displacement of three different meshes using the classical model 

5.5.3.2 Simulations using the micropolar 3D model 

After that, the simulations were conducted again with the 3D micropolar model. Different from the 

classical one, micropolar approach had regularized the localized region, and the width of shear band 

of three different meshes displayed mesh independency as shown in Figure 5-22. Moreover, the mesh 

dependency problems of load-displacement curves were absolutely relieved as shown in Figure 5-23.  

From the comparisons of the mechanical responses between classical and micropolar 

simulations as shown in Figure 5-24, it could be easily found that micropolar technique, being able to 

preserving the property of differential governing equation in finite element analysis, made materials 

stiffer and enabled to delay the bifurcation point. 

 

Figure 5-22 Shear bands in 3D foundations using micropolar model 
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Figure 5-23 Load-displacement of three different meshes using the micropolar model 

 

Figure 5-24 Comparisons of the mechanical property between classical and Cosserat simulations 

5.6 Conclusions 

In this chapter, the micropolar theory within a 3D framework was demonstrated in detail. A 

high-order 20-node cubic solid element having six degrees of freedom (three translational and three 

rotational), was developed via the user-defined interface of ABAQUS, and a reduced integration was 

adopted that successfully avoids the volumetric and shear locking associated with incompressible 
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materials and the hourglass phenomena for low-order element when using reduced integration. 

Furthermore, a finite element implementation of the 3D micropolar model was performed. Through 

simulation of element tests, the 3D micropolar model has been proven to be correct when modeling a 

homogeneous stress state.  

The regularization abilities of the 3D micropolar model were exhibited by simulating boundary 

value problems in the context of strain localization phenomena under both plane strain condition and 

real three-dimensional conditions. Simulations of biaxial tests using the 3D polarized critical state–

based model were compared with the results obtained by using a 2D micropolar model, thereby 

validating the correctness of the 3D micropolar model as well as its ability to overcome numerical 

difficulties and alleviate mesh dependency problems for strain localization phenomena during finite 

element analysis. Similarly, simulation of a three-dimensional foundation for different mesh sizes has 

demonstrated the regularization abilities of the 3D micropolar model. However, more work should be 

further continued on the 3D model.  
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Conclusions and Perspectives 

Conclusions 

As for investigating the strain localization phenomena in geotechnical engineering, main results of 

the thesis can be concluded as follows:  

(1) Considering the fact that great rearrangements and rotations occur inside shear band, the 

micropolar approach with clearer physical sense among other regularization theories, was 

favored in current study to deal with the mesh dependency problems. 

(2) A simple critical-state based sand model has been formulated within the micropolar theory and 

numerically implemented into a finite element code for dealing with 2D and 3D static and 

quasi-static problems, with which the convergence difficulties and the mesh dependency 

problems faced with the classical continuum theory based models were effectively relieved.  

(3) With the micropolar model, the comprehensive study of shear band has been conducted. Based 

on serious simulations, a regularization effective ratio of the internal length to element size was 

proposed to absolutely deal with the mesh dependency problems. Various factors’ influences on 

the shear band patterns and the regularization efficiencies have been investigated, showing that a 

larger lc corresponds to more ductile of material in the softening regime, and shear band thickness 

increases with internal length scale lc; another micropolar parameter Gc has nearly no influence 

on the shear band patterns and the regularization effective ratio; peak load carrying capacity 

increases with initial density, confining pressure, critical friction angle u, strength parameter np, 

and deformation parameter nd, however, the impact of each factor varies. 

(4) The second-order work, as instability criterion, has been newly defined within the micropolar 

theory. After considering the contribution of couple stresses and conjugated curvatures, the 

vanishing of second-order work has been obviously delayed. Moreover, the vanished values of 

second-order work become meaningful in a micropolar continuum. Therefore, the envelope 

diagrams of the local vanishing of second-order work can be used to characterize the failure 

domain. 

 



 

191 

 

Perspectives  

Although the micropolar theory has demonstrated more physical meaning and great ability in dealing 

with mesh dependency problems in finite element analysis, its regularization efficiency was still 

affected by the element size. In this sense, the application of micropolar theory in simulating the very 

large geotechnical structures is still on the way. Based on the current study, the perspectives are 

looked forward to as follows. 

(1) The sensitivity of the results of the finite element simulations to the mesh size has been illustrated, 

while, the influences of the mesh alignment have not been discussed. Therefore, besides the 

rectangular element, more types of the user defined element, e.g. triangle element, should be 

developed for the mesh sensitive study. 

(2) The discussions of the internal length scales in micropolar theory are still an opening question. 

Therefore, the further study about the physical meaning should be continued in the future. 

(3) The other regularization approaches should have also been numerically implemented and 

compared with the micropolar theory, which may be an interesting direction and will be tried in 

the future. Considering the advantages and the scope of applications of each regularization 

technique, the combined regularization approach may be proposed to become more powerful to 

deal with the mesh dependency problems. What’s more, the attempts can also be done to 

implement other advance techniques, such as SPH, MPM, in the near future. 

(4) Current finite element simulations were conducted with the implicit algorithm in ABAQUS, 

which limited the problems in a static or quasi-static domain. Using the explicit method to study 

the dynamic problems is a tendency. 

(5) Although the 2D and 3D micropolar model has been implemented and validated successfully, the 

calculation efficiency was not so powerful to obtain a solution rapidly. As a result, more 

advanced algorithms should be adopted to face the volume interlocking and hourglass problems 

in low-order element. 
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Appendix A: Numerical Pathological Solutions 

Ill-posedness of static loading problems 

From a mathematical point of view, material instability results in changes to the properties of a 

partial differential equation. For simplicity, a one-dimensional uniaxial compression or tension test is 

first taken as an example in context of which to discuss the instability of static loading problems 

under the framework of classical continuum theory. As we know, the total strain of a material point 

can be decomposed into the elastic part and plastic part: 

 e p      (A-1) 

The elastic part can be calculated by the Hooke’s Law, 

 e

E

    (A-2) 

where and E are the axial stress and Young’s modulus, respectively. It is assumed that the material 

belongs to the typical plastic category and that stress rate will decrease linearly with plastic strain 

rate after entering into the softening regime, after which the current stress can be expressed as 

 
0

p
ph      (A-3) 

where and are the current stress and initial yield stress, respectively; hp is the plastic hardening 

(softening) modulus. Thus the plastic part can be calculated from Eq. (A-3): 
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Combining Eqs. (A-1), (A-2) and (A-4), we get the total strain rate: 
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Alternatively, the stress rate can be expressed as a function of total strain rate: 
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The absolute value of softening parameter is less than the Young’s modulus by default. If the 

elastoplastic modulus is changed from   0p pEh E h   to   0p pEh E h   (hp from positive 
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to negative), then the second-order work density  2 0p pEh E h     , and the material goes 

into instability. The rate form of the partial differential equation for one-dimensional static problem 

is expressed as 

  f
x





    (A-7) 

where f is the body force. From Eq. (A-6) and Eq. (A-7), we can get 
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The property of the partial differential equation for static loading problems, it is universally 

acknowledged, must be kept elliptical. When the condition of E > – hp > 0 is satisfied, the property of 

the governing field equation will change from ellipticity to hyperbolicity, and material stability is lost. 

What’s more, the solutions become pathological. 

Ill-posedness of dynamic loading problems 

To aid discussion of the instability and ill-posedness of dynamic loading problems under the 

framework of classical continuum theory, we take a one-dimensional wave equation as an example, 
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where ,  , u , and t are the density of the medium, the stress rate, the spread speed, and the time. 

Reconsidering the relationship between stress rate and strain rate as Eq. (A-6), the wave expressed in 

Eq. (A-9) can also be expressed as 
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where C E  , the property of the foregoing partial differential equation, is hyperbolic when hp > 

0 and, conversely, is elliptic when 0 < – hp < E. To illustrate the problems more clearly, we conduct a 

characteristic analysis of the foregoing wave equation, calculating the first-order derivatives of the 

spread speed u  in the x–t plane: 
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Based on Eq. (A-10), Eq. (A-11), and Eq. (A-12), we can obtain a matrix equation in which 
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The multiplier matrix is noted to be A, after which we can obtain the characteristic functions from 

the condition det(A) = 0: 
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The foregoing equation means that the wave spreads with a speed of  p pC h E h when 

  0p ph E h  , as well as that the wave speed is an imaginary number. Furthermore, the wave will 

become a standing wave, unable to spread any more. 

From the foregoing discussions, we can conclude that the property of partial differential 

equations used in dynamic loading problems will vary from hyperbolic to elliptic in response to 

strain softening behaviors within the framework of classical continuum theory. When the wave speed 

in the strain localization region becomes an imaginary number, the wave will become a standing 

wave and lose the ability to spread further. 
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Appendix B: Mesh Dependency Problem within Classical Continuum Theory 

Mesh dependency phenomenon can be observed by revisiting an example, the uniaxial tension test of 

a bar, conducted by Crisfield and de Borst (1982, 1986), in which a softening plasticity model was 

adopted. 

 
Figure B-1 Uniaxial tension test of a bar 

In Figure B-1, a bar of length L is divided uniformly into m elements, with each element having 

a length h, so that L = mh. Moreover, it is assumed that one element has been set as an imperfection 

and has a tensile strength limit y that is slightly weaker than other m – 1 elements. A tension load is 

performed in the right side of the bar, and the final displacement is u. An approximation of the 

measured load–displacement relation is plotted in Figure B-2. During the first stage, before reaching 

the tensile yield stress of the weak element, all the elements’ response is elastic until the yield stress 

y, with a linear relation assumed between the stress  and the strain  = e (p = 0) during this stage, 

defined as 

 , (if / )e
yE E       (B-1) 

A softening stage ensues. In this second stage, on reaching the yield strength y of the imperfect 

element, its current stress begins to reduce with further tension because of the material’s softening 

behavior. However, this condition has not exceeded other elements’ yield strength, meaning that they 

will unload elastically to maintain the equilibrium of the system. It is also assumed that the 

descending slope is a constant (i.e., that the softening parameter H does not vary with the inelastic 

strain). In the softening stage, then, 

 ( ), (if / )e
y yH E            (B-2) 

The relation of the average strain of the bar and the evolution of current stress is plotted in Figure 

B-3, which indicates that the results depend entirely on the discretization of the bar. The finite 
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element method simply manages to capture the failure zone in a single element thickness, 

irrespective of the size of the element: 

, ( )
e p p

ye
y

u hm h

L mh m E mH

       


        (B-3) 

From the preceding mathematical derivation, it can be easily found that   depends on the 

element number m: after the onset of strain softening ( )y   the solution is entirely determined 

by the discretization. When the imperfect element is totally exhausted, and current stress becomes 

zero. It is obvious from Figure B-3 that when the bar is infinitely divided, m tends toward an infinite 

value, with the post-peak curve receding absolutely along the original loading path. A major problem, 

however, is that because the constitutive model has always been illustrated in terms of a stress–strain 

law and not as a force-displacement relation, when the average strain becomes zero upon mesh 

refinement and the failure area also becomes zero, energy dissipation also tends to become zero. 

From a physical point of view, this is unacceptable. We must either rephrase our constitutive model 

in terms of force–displacement relations, which implies the use of special interface element (Rots, 

1988), or enrich the continuum description by adding higher-order terms that can accommodate 

narrow zones of highly localized deformation (de Borst and Mühlhaus, 1991). 

It can be judged from Figure B-3 to obtain a meaningful solution for elastoplastic materials. It is 

compulsory to set m <	ߪ௬/ܪ. 

 

Figure B-2 Softening response in stress-strain 
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Figure B-3 Solution dependency on the discretization for a bar in uniaxial test 

The mechanism of these mesh dependency problems has been demonstrated clearly from a 

mathematical and analytical point of view. Similarly, mesh dependency problems exist with the 

softening of constitutive models within the framework of the classical continuum theory in general 

2D or 3D cases, especially when the failure analysis is performed by the finite element method. 
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Appendix C: Full Formulations of Micropolar Theory 

Issues of strain localization in failure analysis of geotechnical structures are of great importance in 

geotechnical engineering. Considering the numerical difficulties of finite element method in 

modeling strain localization phenomena within the framework of classical Cauchy–Boltzmann 

continuum mechanics, various approaches have been proposed to overcome these difficulties. For 

example, methods based on micropolar continuum theory, gradient-enhanced constitutive laws, 

embedded weak or strong discontinuities, or the nonlocal integral constitutive equations have been 

under intensive investigation in recent years, as mentioned in the previous chapter.  

The pioneering work of the Delft University of Technology (de Borst, 1991; de Borst and 

Mühlhaus, 1991; de Borst and Sluys, 1991; de Borst, 1993) was based on a reappraisal of the 

mechanics of generalized continua developed in the 1960s (Kröner, 1967; Forest et al., 2001). 

Generalized continua can be classified into three main groups:  

(1) micropolar continua are endowed with additional degrees of freedom in addition to the usual 

displacement field (Cosserat and micro-orphic theories, according to (Eringen, 1976);  

(2) higher-grade continua introduce higher space derivatives of the displacement field than the 

usual deformation gradient (second gradient theory, according to (Mindlin and Eshel, 1968), and this 

class of theories also incorporates the gradients of some selected internal variables that play 

significant roles in the balance and constitutive relations (Aifantis, 1987);  

(3) the third or last class contains fully nonlocal media for which integral relations relate stress 

and strain evolutions (Eringen, 1976; Pijaudier-Cabot and Bažant, 1987).  

Among these three approaches, micropolar theory is particularly attractive for its relative ease 

of implementation and its suitability in capturing shear-dominated modes of failure. Furthermore, the 

micropolar theory, in which the grain rotations and couple stresses arise naturally and can be easily 

explained from a point of view of physics, has been adopted in present study. 

In contrast to micropolar theory, classical continuum mechanics considers only the interaction 

of microstructures of material through global displacements of material points. However, in reality, 

interactions of grains may include micro-rotations and consequently produced micro-curvatures and 

corresponding conjugated couple stresses. Accordingly, extending the classical continuum to a 
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generalized micropolar continuum that considers micro-rotations has become a popular topic among 

those attempting to explain the micro-scale effects.  

 
Figure C-1 Asymmetry stress distribution in micro polar theory 

Classical continuum models, not having any internal length scale parameter, suffer from 

pathological mesh dependency when modeling strain localization in failure analysis. A potential 

reason for this defect is that the governing field equations of the constitutive model within the 

framework of classical theory will convert from the elliptic property into the hyperbolic one under 

static loading conditions when a localization zone sees excessive development. For half a century, 

micropolar theory with high-order terms has been used as a regularization approach to preserve the 

ellipticity.  

Two-dimensional plane strain problems are first taken into consideration for the introduction of 

micropolar theory. There are three generalized displacement degrees of freedom for each 

micro-element. 

 
T

x y zu u    u   (C-1) 

As Figure C-1, after an additional rotational degree of freedom for a micro-element has been 

introduced in the constitutive model for two-dimensional problems, the stress distributions of a micro 

plane element become asymmetric. 

Different from Cauchy stress and Cauchy strain based on classical continuum mechanics theory, 

the stress and strain vectors in micropolar continua are generalized to consider micro-curvatures and 

micro-moments, 
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where zx and zy are introduced as micro-curvatures in micropolar theory, derived from the gradients 

of rotational quantity z in directions x and y; mzx and mzy are couple stresses energy conjugated to 

the curvatures zx and zy; and lc, a material bending length, may be taken as an internal length. The 

value of internal length lc, however, is still an open question. Many researchers imbue this parameter 

with more physical meaning and then take the mean grain size d50 as the internal length scale 

parameter.  

When considering the additional components of stress and strain, it must be noted that the stress 

tensor is non-symmetric and that the couple stress are noticeable in the shear zones. However, the 

stress tensor is symmetric, and the couple stresses disappear outside the shear zones. The occurrence 

of non-symmetry in the stress tensor and the appearance of the couple stresses take place 

immediately after the onset of the strain localization. Accordingly, when interests are limited to strain 

localization phenomena, the equilibrium equations, compatibility equations, and constitutive laws in 

micropolar continua mechanics must be revised by considering the additional components of stress 

and strain on the basis of classic continua mechanics, as will be illustrated in detail in the following 

sections. 

Equilibrium equations 

Static equilibrium 

With the incorporated couple stresses as already discussed, the equilibrium of a micro plane element 

having a very small size of dx in x direction and dy in y direction is considered while ignoring the 

body force and body moment. The thickness of the micro-element is assumed to be one unit. As 

shown in Figure C-2, the stress distribution on the right side is slightly different from that on the left 

side, and the up side is different from the down side in the x and y directions.  
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Figure C-2 Micropolar plane element: (a) ideal stress distribution of a micro polar element; (b) considering the 

slight difference caused by micro size 

Based on the static equilibrium conditions: 0xF  , 0yF  , 0oM   (o is the centroid 

of the element), three equilibrium equations can be obtained:  
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It is assumed that the element size is rather small (dx and dy are the infinitesimal quantities), 

which means that the higher-order terms can be ignored. Consequently, if the body force and body 

moment are also ignored, the foregoing equilibrium equations can be simplified in the form 
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The first two sub-equations of Eq. (C-5) are the same as in the classical continuum theory. The 

third sub-equation is a particular case of micropolar theory from which we can observe that the 

theorem of conjugate shearing stress is no longer true owing to the appearance of the couple stresses. 

In geotechnical engineering, the shear stresses are categorized into the symmetric part and skew 

symmetric part based on the roles they play on the micro-element. The symmetric part 

  2S xy yx     produces the shear strain, whereas the skew symmetric part   2A xy yx     

only induces the independent rotation of the micro-element and has nothing to do with the shear 

strain. If the skew symmetric part disappears ( 0A  , S xy yx    ), it satisfies the theorem of 

conjugate shearing stress, and the micropolar theory is totally retrieved to the classical continuum 

mechanics theory. 

 

 

Figure C-3 Symmetric part and the skew symmetric part of the shear stress in micro polar theory 

Dynamic equilibrium 

For dynamic problems, apart from the conventional way, linear inertia terms, the rotational or spin 

inertia are also taken into account in a micropolar continuum for which the form of equilibrium 

equations is similar to those of static ones, 
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where  is the mass density, t denotes time, and represents spin inertia per unit volume. The first 

two sub-equations in Eq. (C-6) are the equilibrium equations of forces, and the third responds to the 

moment equilibrium. The value for depends on the size of the micro-elements and on the density . 

The micro-elements have been assumed to be cubes having edges of length 2d (de Borst and Sluys, 

1991), as shown in Figure C-4. In two dimensions, the spin inertia of such a micro-element can be 

calculated: 

  2 2 2
d d
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d d

x y d dxdy
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      (C-7) 

Carrying out the spatial integration with respect to x and to y results in 

 516

3cube d    (C-8) 

so the spin inertia per unit volume in z direction is given by 

 22

3
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
     (C-9) 

 
Figure C-4 Cube micro element and spin inertia 

Considering a spin moment acting on the micro-element: 
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For the couple stress mxz, then, we can get 
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If the elastic relation is assumed (see Eq. (C-21) in the section 3), the micro-moment can be 

calculated by the corresponding micro-curvature: 

 22xz xz cm G l   (C-12) 

The internal length scale lc is then directly related to the element size 2d: 
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Substitution of this relation into Eq. (C-9) results in 
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  (C-14) 

From all the foregoing formulations, it can be easily found for dynamic problems that only 

density  is a new added parameter compared with static problem. 

Kinematics equations 

In micropolar theory, apart from the translational degrees of freedom inherited from the classical 

continuum theory, an additional rotational degree of freedom appears and results in an independent 

micro-rotation different from the macro-rotation caused by shear strain. The micropolar theory thus 

requires two independent kinematical fields: The first aims to obtain the conventional strain tensor, 

and the second is used to get the curvatures or the rotation gradients. That is to say, the 

micro-rotation may be an arbitrary value with 
1

2
y x
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u u

x y

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. For the components of the strain 

vector in Eq. (C-2), the normal strain xx  and yy  can be still calculated by using the same 

classical continuum theory, whereas the curvatures xz  and yz  conjugated with the couple 

stresses xzm  and yzm  are related to the micro-rotation ... From Figure C-5, the geometric 

relationship between curvatures and the micro-rotation can be formulated as follows: 
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Figure C-5 Bending curvatures and couple stresses of a micropolar element 

 
Figure C-6 Shear strains in micropolar theory 

Considering the shearing of a micro-element (one reduced material point inside the element is 

assumed) in micropolar theory depicted in Figure C-6, as well as its independent rotation, we can 

find that the shear strain components in micropolar theory are related not only to the translational 

deformation but also to the micro-rotation. Then the shear strain components can be derived:  
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To summarize, the geometric equations of the plane strain problems in micropolar continuum 

theory are formulated as follows: 

x

y

xzm

xzm

z
1

x
xz






x

z
xz x

 




z
z xx

 



x

y

yzm

yzm

1
y

yz






y z

z
z yy

 



z
yz y

 




yx

yx

xu

y




z

xy xy

yu

x




z



 

206 

 

 

,

,

0

,

yx
xx yy

y x
xy z yx z

zz

z z
xz yz

uu

x y

u u

x y

x y

 

   


  

 
   
 

   
 

 
     

  (C-17) 

Constitutive laws 

To summarize the two foregoing subsections, a similar process has been found for the micropolar 

continuum theory as for the classical continuum mechanics theory, which must necessarily obey the 

kinematic and equilibrium equations. The foregoing equations can be written in matrix–vector forms 

for simplification, 

 ε Lu   (C-18) 

 0T  L σ f   (C-19) 

where f denotes body force vector (including body moment) and the displacement-strain operator 

matrix L is defined as 
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Elastic models 

For the constitutive relation of elastic materials, the stress rate is linearly related to elastic strain rate 

by the elastic stiffness matrix 

 e eσ D ε    (C-21) 

in which  
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where Lamé constant G2, G and  are the conventional shear modulus and Poisson’s 

ratio, respectively, and Gc is the micropolar shear modulus affecting the asymmetric degree of shear 

stress. The coefficient 2 has been introduced in the terms De
 (6, 6) and De

 (7, 7) so as to arrive at a 

convenient form of the inelastic constitutive equations (de Borst, 1991; de Borst and Mühlhaus, 1991; 

de Borst and Sluys, 1991; de Borst, 1993). Obviously, the total bending stiffness 2Glc
2, which sets 

the relation between the micro-curvatures and the couple stresses, is determined by the value of the 

internal length scale parameter lc. 

Elastoplastic models 

For the formulation of a general elastoplastic micropolar continuum, the hypothesis that strain rate 

can be decomposed into both elastic and plastic parts for small–strain plasticity is adopted: 

  e pε ε ε     (C-23) 

Combining Eq. (C-23) and Eq. (C-21) results in 

 ( )e  pσ D ε ε     (C-24) 

Furthermore, the plastic strain is given by 
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ε m m

σ
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where Q is the potential function,  denotes the plastic multiplier, and m determines the direction of 

plastic flow. For a general elastoplastic yield function 

 ( , ) ( ) ( ) 0F    σ κ σ κ   (C-26) 

in which σ  represents the current stress state and  is a vector containing the hardening variables, 

the Kuhn–Tucker conditions must be satisfied: 
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which means the multiplier is a nonnegative value, current stress must located within or on the yield 

surface and the consistency condition must be satisfied. The plastic flow is governed by the 

consistency condition 

 0TF h  n σ     (C-28) 

where the gradient to the yield function and the hardening modulus can be calculated as 
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respectively. Combining Eq. (C-24) and Eq. (C-28), we obtain the elastoplastic relationship of stress 

rate and strain rate: 
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The stress and strain rate are the generalized vectors of a micropolar continuum defined in Eq. (C-2) 

and Eq. (C-3). The elastoplastic stiffness matrix can be defined as 
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Appendix D: Brief Introduction of UMAT and Validation 

Introduction of UMAT 

User defined material (UMAT) is one of the functions of the commercial FE software—ABAQUS. 

The UMAT subroutine, with specific format is shown in Figure D-1, needs to be coded to define the 

mechanical behavior of a material. The specific interface is able to realize data transference and data 

sharing between different subroutines of ABAQUS. Various constitutive models can be numerically 

implemented as alternatives to become the built-in ABAQUS models. UMAT greatly increases the 

power of ABAQUS, allowing it to contain more and more materials with arbitrary complexity.  

When programming a UMAT, users can still take the advantages of ABAQUS’s pre-processing 

and post-processing platforms, making implementation easy. All that users need to do is completely 

incorporate the constitutive law into the subroutine. In the UMAT subroutine, certain indispensable 

arrays, such as the current strain STRAN(NTENS), the strain increment DSTRAN(NTENS) and initial 

input parameters PROPS(NPROPS), and the current stress STRESS(NTENS), must be defined. Some 

other variables, such as the Jacobian matrix DDSDDE(NTENS,NTENS), stress STRESS(NTENS), and 

state variables STATEV(STATV), need to be updated and saved at the end of the subroutine, after 

which all updated arrays will be returned into UMAT subroutine as a current new state for further 

calculation. A detailed description of UMAT can be found in the ABAQUS documentation. The 

process for defining a user-defined material is briefly demonstrated in flowchart in Figure D-2. The 

integration method, cutting plane algorithm, in the flowchart has been illustrated in Chapter 2. 
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Figure D-1 Subroutine interface of UMAT 

 

Figure D-2 Flowchart of UMAT 

Verification of UMAT 

Guaranteeing the correctness of an implementation of the UMAT program requires numerical 

validation: comparison of finite element numerical results from UMAT with those from the 

integration point program (IPP), whose constitutive relations are limited only in stress–strain level. It 
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is assumed the results from the stress–strain level (one Gauss point) are the correct and objective 

ones by default. 

UMAT simulations of the typical laboratory tests with the SIMSAND model, including drained 

and undrained triaxial tests and drained and undrained biaxial tests for both loose and dense Toyoura 

sand (Jin et al., 2016; Wu et al., 2017), were compared with those from IPP. It is worth noting that all 

results are based on the assumption that specimens are sustained in a homogeneous state from 

beginning to end. For drained tests, there were two steps: the first step was isotropic compression, 

and the second one was the shear loading by the strain control of the top side of specimen, mean 

while keeping the confining pressure constant. Differently, for undrained tests, the specimen volume 

was kept constant by controlling the axial and lateral strain at the same time in the second shear 

loading step.  

The comparisons of IPP and UMAT simulations of drained and undrained for both dense and 

loose Toyoura sand were shown from Figure D-3 to Figure D-6. In all the figures, each subfigure 

denotes different meaning: (a) axial strain versus deviatoric stress, (b) mean effective stress versus 

deviatoric stress, (c) axial strain versus void ratio, and (d) mean effective stress versus deviatoric 

stress. From the comparisons, it can be found that the simulated results produced by UMAT are 

absolutely consistent with those produced by IPP, thus amply verifying the correctness of the UMAT 

implementation. The successful implementation of UMAT in ABAQUS will lay a solid foundation 

for further implementation of a UEL. 
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Figure D-3 Comparisons between IPP and UMAT in simulating triaxial drained test 

 

Figure D-4 Comparisons between IPP and UMAT in simulating triaxial undrained test 
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Figure D-5 Comparisons between IPP and UMAT in simulating biaxial drained test 

 

Figure D-6 Comparisons between IPP and UMAT in simulating biaxial undrained test 
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Appendix E: Calibration with Optimization Method 

After the detailed description of all the parameters for the micropolar constitutive model in chapter 2, 

their estimation process has been illustrated in this section. From the description of these parameters 

in the previous section, we know that certain of them, such as lc and , can be assumed at the 

beginning; the micropolar shear modulus Gc can be set to depend on the shear modulus G; the 

elasticity-related parameters K0,  can be identified by fitting the isotropic compression test; and the 

critical state-related parameters u, eref, and  and plastic interlocking parameters kp, Ad, np, and nd 

can be identified by a series of triaxial tests. The genetic optimization method was used to search for 

these parameters, and the process for finding the optimized solutions is displayed hereafter. For more 

information about the optimization technique, please consult Jin et al. (2016). 

 

Figure E-1 Particle size distribution of F-75 sand 

Laboratory tests on Ottawa sand was chosen to demonstrate the process of calibrating the 

parameters of the SIMSAND model. F-75 Ottawa sand, as seen in Figure E-1, is fine-grained, 

rounded, and uniform white sand obtained from Ottawa Industrial Silica (d50 = 0.22 mm, Gs = 2.65, 

emin = 0.486, emax = 0.805). The data from one isotropic compression test on Ottawa sand (Omar, 

2010), and five different drained triaxial tests on medium-density Ottawa F-75 sand with three 

different values of confining pressure p'0 and three different initial void ratios e0 (Alshibli et al., 

2003), were selected to be the fitting objects. It was assumed that the elasticity-related parameters are 

the same for Ottawa sand of different densities; thus these parameters, as obtained from the isotropic 
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compression test, were also suitable for triaxial tests. Nine independent parameters needed to be 

identified by experimental data, and another three parameters could be assumed in advance (lc and ) 

or set to depend on other parameters (Gc). Because many researchers (Roscoe, 1970; Vardoulakis et 

al., 1978; Mühlhaus and Vardoulakis, 1987; Desrues, 1990; Alshibli and Sture, 1999, 2000b; Yoshida 

et al., 1994; Tatsuoka et al.,1997; Tejchman et al., 1999; Viggiani et al., 2001; Alshibli et al., 2002; 

Alsaleh, 2004; Desrues and Viggiani, 2004) have found that the thickness of the shear band is 

linearly related to the mean grain size from biaxial tests, and because the thickness of the shear band 

has also been found to be linearly related to the internal length scale lc in numerical simulations, in 

the present study, lc, reflecting the microstructure, was regarded as the mean grain size by default, 

and there was no need to identify it by fitting the experimental curves. For a more specific value of lc, 

it can also be decided by reproducing the thickness of the shear band (as in the biaxial test). 

The adopted parameter estimation procedure is divided into three steps: First, the elasticity 

parameters can be determined based on the isotropic compression test; then, the critical state 

parameters can be inversely searched for, based on at least three drained triaxial tests; and finally, the 

interlocking related parameters can be defined based on at least one drained triaxial test. The 

optimization technique assists in finding a more accurate model parameter that is capable of 

adequately describing the sand behavior. The detailed procedures are presented in the following 

sections. Using the genetic optimization technique, the optimized parameters were found and are 

summarized below. Thereafter, the comparisons between the laboratory data and simulated results 

with the optimized parameters will be displayed. 

Table E-1 Optimized values of constitutive parameters 

Parameters K0  u eref  kp Ad np nd

Values 60 0.63 35.8 0.776 0.015 0.004 0.4 1 2
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(a) 

 

(b) 

Figure E-2 Calibration of parameters with isotropic compression and triaxial drained tests of F-75 sand: (a) one 

isotropic compression test; (b) five different triaxial drained tests with different confining pressure 

Based on these comparisons between the simulations and the experimental results, we can 

discern that the optimized parameters for the critical state–based model are able to adequately 

describe the sand behaviors in the isotropic compression and triaxial drained tests. By means of the 

calibration process, we can deeply understand the model and its parameters. 

Micropolar theory is mainly used to reflect the micro-size effect and deal with the mesh 

dependency problems by regularizing the governing field’s equations in finite element analysis. Thus, 

the influences on the final results caused by the internal length scale lc were observed and detailed 
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discussed in the chapter 3 and chapter 5, when the program have been numerically implemented in 

the finite element code in the commercial software ABAQUS. It should be noted that only when the 

rotational degree of freedom is activated (inhomogeneous deformation) can lc play a significant role 

in regularizing the field equations in finite element analysis. 
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Résumé 
 

La plupart des ruptures des structures géotechniques 
sont associées aux phénomènes de localisation des 
déformations, qui s'accompagnent toujours d'un 
adoucissement de la résistance. De nombreuses 
observations expérimentales montrent que d’importants 
réarrangements et rotations de particules se produisent à 
l'intérieur des bandes de cisaillement. Cette thèse vise à 
étudier numériquement les phénomènes de localisation 
des déformations dans les matériaux granulaires. 
Considérant les problèmes de dépendance au maillage 
dans l'analyse par éléments finis dans le cadre de la 
modélisation continue classique, un modèle de sable 
basé sur l'état critique a été formulé dans le cadre de la 
théorie micropolaire. Un code d'éléments finis pour les 
problèmes bidimensionnels a été développé dans ce 
cadre. Ensuite, les simulations d’essais biaxiaux ont 
permis d’étudier en profondeur les caractéristiques des 
bande de cisaillement en termes d'apparition, 
d'épaisseur, d'orientation, etc… Dans le même temps, 
l'efficacité de l'approche micropolaire, en tant que 
technique de régularisation, a été discutée. L'analyse de 
l'instabilité dans un continuum micropolaire basé sur le 
travail du second-ordre a également été effectuée. Enfin, 
pour une application plus large dans la simulation des 
défaillances en ingénierie géotechnique, le modèle 2D a 
été étendu à un modèle 3D. Sur la base de l'étude, les 
modèles 2D et 3D ont démontré leurs capacités de 
régularisation pour éviter les problèmes de dépendance 
au maillage et reproduire raisonnablement les bandes de 
cisaillement dans les géostructures. 
 
Mots-clés 
Sol granulaire, bande de cisaillement, méthode des 
éléments finis, dépendance au maillage, théorie 
micropolaire, instabilité.  
 

Abstract
 

Most of the progressive failures of geotechnical 
structures are associated with the strain localization 
phenomenon, which is generally accompanied by 
strength softening. Many experimental observations 
show that significant rearrangements and rotations of 
particles occur inside the shear bands. The aim of this 
thesis is to investigate numerically the strain localization 
phenomena of granular materials. Considering the mesh 
dependency problems in finite element analysis caused 
by strain softening within the classical continuum 
framework, a sand model based on critical-state has 
been formulated within the framework of the micropolar 
theory, taking into account the micro rotations, and 
implemented into a finite element code for two 
dimensional problems. Then, the simulations of the shear 
band in biaxial tests are comprehensively studied in 
terms of onset, thickness, orientation, etc. At the same 
time, the efficiency of the micropolar approach, as a 
regularization technique, is discussed. This is followed by 
an instability analysis using the second-order work based 
on the micropolar continuum theory. Finally, for a wider 
application in simulating failures in geotechnical 
engineering, the 2D model has been extended to 3D 
model. Based on the entire study, both the 2D and 3D 
model demonstrate obvious regularization ability to 
relieve the mesh dependency problems and to reproduce 
reasonably the shear bands in geostructures. 
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