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Abstract

Granular materials exhibit a wide spectrum of constitutive features when submitted under

various loading paths. Developing constitutive models which succeed in accounting for

these features has been challenged by scientists for decades. A promising direction for

achieving this can be the multi-scale approach. Through this approach, the constitutive

model is formulated by relating material’s macroscopic properties to their corresponding

microstructure properties.

This thesis proposes a three-dimensional micro-mechanical model (the so-called 3D-H

model) taking into account an intermediate scale (meso-scale) which makes it possible

to describe a variety of constitutive features in a natural way. The comparison between

experimental tests and numerical simulations reveals the predictive capability of this model.

Particularly, several simulations are carried out with different confining pressures and initial

void ratios, based on the fact that the critical state is quantitatively described without requiring

any critical state formulations and parameter. The model is also analyzed from a microscopic

view, wherein the evolution of some key microscopic parameters is investigated.

Then, a 3D multi-scale approach is presented to investigate the mechanical behavior of

a macroscopic specimen consisting of a granular assembly, as a boundary value problem.

The core of this approach is a multiscale coupling, wherein the finite element method is

used to solve a boundary value problem and the 3D-H model is employed to build the

micro constitutive relationship used at a representative volume element scale. This approach
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provides a convenient way to link the macroscopic observations with intrinsic microscopic

mechanisms. Plane-strain biaxial loading conditions are selected to simulate the occurrence

of strain localization. A series of tests are performed, wherein distinct failure patterns are

observed and analyzed. A system of shear band naturally appears in a homogeneous setting

specimen. By defining the shear band area, microstructural mechanisms are separately

investigated inside and outside the shear band. Moreover, a second-order work directional

analysis is performed by applying strain probes at different stress-strain states along drained

biaxial loading paths. The normalized second order work introduced as an indicator of

an unstable trend of the system is analyzed not only on the macroscale but also on the

microscale.

Finally, a second order work analysis in application to geotechnical problems by using

the aforementioned multiscale approach is presented. The multiscale approach is used to

simulate a homogeneous and a non-homogeneous BVP, opening a road to interpret and

understand the micro mechanisms hiding behind the occurrence of failure in geotechnical

issues. This multiscale approach utilizes an explicit-dynamic integral method so that the

post-peak failure can be investigated without requiring over-sophisticated mathematical

ingredients. Thus, by switching the loading method from a strain control to a stress control

at the limit state, the collapse of the system can be reflected in an abrupt increase of kinetic

energy, stemming from the difference between both internal and external second-order works.

Keywords: Constitutive modeling, Meso-scale, Multiscale, Micro-structure, Finite ele-

ment method, Instability, Strain localization, Shear band, Second-order work



Résumé

Les matériaux granulaires présentent un large éventail de types de comportement lorsqu’ils

sont soumis à différents chemins de chargement. Le développement de modèles constitutifs

permettant de rendre compte de ces caractéristiques a été une préoccupation constante de

nombreux chercheurs depuis des décennies. Parmi les différentes options possibles, les

approches par changement d’échelle semblent prometteuses. Dans ces approches, le modèle

constitutif est formulé en reliant les propriétés macroscopiques du matériau aux propriétés

micro-structurelles correspondantes.

Cette thèse propose un modèle micromécanique tridimensionnel (le modèle H-3D)

prenant en compte une échelle intermédiaire (méso-échelle). Il permet ainsi de décrire

de manière naturelle un grand nombre de caractéristiques constitutives des matériaux gran-

ulaires. La comparaison entre essais expérimentaux et simulations numériques révèle la

capacité prédictive de ce modèle. En particulier, des simulations réalisées avec différentes

pressions de confinement et différents indices de vide initiaux ont permis de démontrer

la capacité du modèle à rendre compte quantitativement de l’état critique sans nécessiter

d’équation spécifique et de paramètre d’état critique. Le modèle est également analysé

à l’échelle microscopique, où l’évolution de certains paramètres microscopiques clés est

présentée.

Une approche multi-échelle 3D est ensuite présentée afin d’étudier le comportement

mécanique d’un échantillon macroscopique constitué d’un assemblage granulaire, en tant que
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problème aux conditions limites. Le cœur de cette approche est un couplage multi-échelle,

où la méthode des éléments finis est utilisée pour résoudre le problème aux conditions

limites et le modèle H-3D est utilisé pour décrire le comportement à l’échelle d’un volume

élémentaire représentatif. Cette approche fournit un moyen pratique de relier les observations

macroscopiques avec les mécanismes microscopiques intrinsèques. Des conditions de

chargement biaxiaux en déformations planes sont appliquées pour simuler le phénomène de

localisation des déformations. Une série de tests est effectuée, où différents motifs de rupture

sont observés et analysés. Un système de bandes de cisaillement apparaît naturellement dans

un spécimen initialement homogène. En définissant la zone de la bande de cisaillement, les

mécanismes microstructuraux sont étudiés séparément à l’intérieur et à l’extérieur de celle-ci.

En outre, une analyse directionnelle de travail du second ordre est effectuée en appliquant des

petits incréments de contrainte à différents états de contrainte-déformation sur des chemins

de chargement biaxiaux drainés. Le travail de second ordre normalisé, introduit comme un

indicateur d’instabilité du système, est analysé non seulement à l’échelle macroscopique

mais aussi à l’échelle microscopique.

Enfin, une analyse du travail de second ordre appliquée à des problèmes géotechniques et

utilisant l’approche multi-échelle développée dans cette thèse est présentée. L’approche multi-

échelle est utilisée afin de simuler des problèmes aux conditions limites homogènes et non

homogènes, offrant ainsi la possibilité d’interpréter et de comprendre les micro-mécanismes

qui sont à l’origine des phénomènes de rupture dans les problèmes géotechniques. Cette

approche multi-échelle utilise un schéma numérique d’intégration dynamique-explicite afin

de pouvoir étudier la rupture post-pic sans avoir à recourir à des outils mathématiques

sophistiqués. Ainsi, en changeant le type de condition de chargement de déplacement à

contrainte lorsque le système atteint l’état limite, un effondrement se produit, correspondant à

une augmentation soudaine de l’énergie cinétique provenant de la différence entre les travaux

internes et externes du second ordre.
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Chapter 1

General introduction

With the development of human social civilization, the artificial structures in interaction

with the soil are becoming more and more important. The soil, as a kind of porous granular

material, is a significant material involved in various kinds of engineering, such as civil

engineering, environmental engineering, mining engineering, shore engineering and etc.

However, no fundamental theory is currently available to describe its properties. The

behavior of one single grain is easily understood, but the properties of a granular collection

are much more complex. Besides, the proper understanding of its behavior is essential

to the formulation of realistic constitutive models and to the capturing of various failure

patterns and instability modes in geomaterials. The main objective of this thesis is to

contribute further to multiscale modeling of granular materials. Therefore, this thesis aims

at developing a micromechanically-based constitutive model and at implementing this model

within a multiscale approach in order to understand and investigate the complex phenomena

taking place within granular materials.



2 General introduction

1.1 Motivation

Granular materials, as a fundamental material involved in various engineering fields, expe-

rience a complex behavior, which is strongly influenced by loading history, initial density

and microstructure evolution. Due to the complex behavior, a rich variety of deformational

modes arises in granular materials including the well-known phenomena such as liquefaction,

dilatancy, densification, diffuse and localized failure modes and instability. The notion of

instability in mechanics has its origins back to the seminal work of (Hill, 1958), which raised

the significantly theoretical issue as to the condition of material instability and beyond to the

global (boundary value) level.

When granular materials are subjected to the external loading, various deformation modes

can develop. For example, a sand specimen subjected to a drained triaxial loading path may

either localize into shear bands or deform in a diffuse manner throughout its entire mass.

In both cases, the problem underlies a material instability phenomenon that develops from

initial disturbances of materially or spatially uniform regions of the granular material due

to microstructural features on a small scale. Structural instability is in contrast related to

external boundary effects rather than disturbances at the microstructure level. At such a

microscale, mechanisms of energy dissipation and inter-granular force transmission lead to

local instabilities that reflect at the larger macroscopic scale as shear dilatancy, localization

of deformations and liquefaction, among others. Localization consists of different forms of

concentrated deformations such as shear bands, compaction bands and dilation bands (Rice,

1976; Rudnicki and Rice, 1975; Sulem and Vardoulakis, 2004; Vardoulakis et al., 1978) or

fractures where sharp discontinuities arise. These bands or strong discontinuities lead to an

unstable response that is associated with a bifurcation problem triggered at or near plastic

limit state.
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1.2 Objectives

The main objective of this thesis is to contribute further to the study of the complex behavior

of granular materials, especially from a multiscale point of view. As such, the intent of the

present work is to propose a robust constitutive model, and thereafter implement it within a

Finite Element Method, in which boundary value problems can be solved. Various aspects of

the problem, such as those related to microstructure (fabric), propensity to stress-dilatancy

and loading regime are addressed in order to evaluate their relationship to the occurrence of

instability within granular materials. Thus, the specific objectives of this research are to:

• formulate an effective constitutive model by taking into account a meso-structure

acting on an intermediate scale, linking the macro and micro scales, as an extension of

the H-directional model earlier proposed by (Nicot and Darve, 2011b);

• calibrate the model parameter and examine the performance of the model in various of

loading conditions at a material point level;

• implement the enhanced constitutive model within a finite element framework by using

a multi-scale approach, where the finite element method is used to solve boundary

value problem whereas the constitutive model applies at the Gauss points;

• analyze boundary value problems ranging from a lab specimen size to a field scale;

and lastly

• analyze the instability occurrence of granular materials in geotechnical engineering

problems by using the second-order work theory.
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1.3 Methodology

As illustrated in many studies (Bagi, 1993; Kruyt and Rothenburg, 1996; Zhu, 2015), the

evolution of material and force fabrics is significant for the macroscopic behavior of granular

materials. In order to achieve the objective outlined above, a novel constitutive model called

3D-H model taken a meso-structure into account will be formulated under general three-

dimensional conditions. This model is an extension of the H-microdirectional model earlier

developed by (Nicot and Darve, 2011b). It is essential that such a model accounts for the

complexity of not only the underlying granular material structure but also the deformation-

loading process, for which the embedding meso-structure plays a significant role in the

loading history, reflecting the local dilatancy and the rearrangement of the granular assembly.

Particularly, the strong dependency of granular material behavior on mean stress, density

and microstructure has to be properly addressed. Here, a model with adequate mechanical

content is proposed, and because of the non-symmetry of the resulting constitutive tensor, a

whole variety of material responses can be envisaged with the possible loss of uniqueness of

solutions of the underlying constitutive equations. As a result, various types of bifurcations

can be expected clearly before the plastic limit condition is reached.

The above-mentioned 3D-H model is then implemented within a finite element code

called ABAQUS (see a brief view in Appendix B) by using a multiscale approach. A 3D multi-

scale approach is presented to investigate the mechanical behavior of a macroscopic specimen

consisting of a granular assembly, as a boundary value problem. The core of this approach is

a multiscale coupling, wherein the finite element method is used to solve a boundary value

problem and the 3D-H model is employed to build the micro constitutive relationship used at

a representative volume element scale. This approach provides a convenient way to link the

macroscopic observations with intrinsic microscopic mechanisms.
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It is now well established that the second-order criterion is convenient to detect and

analyze the material instability occurrence. A certain class of instabilities, related to the

occurrence of an outburst in kinetic energy, could be properly detected by the vanishing

of the second-order work. Furthermore, the second-order work formalism was recently

extended from the material point scale (or for homogeneous specimens under homogeneous

loading conditions) to any material system. Both strain and stress fields may no longer be

homogeneous such as for geotechnical engineering problems. A novel approach is employed

in which internal and external second-order works are computed based on the mechanical

parameters (forces, displacements) acting on the boundary of the system only, without

requiring any internal information within the system.

1.4 Thesis outline

The thesis comprises three main parts: (1) developing a constitutive model, (2) implementing

the constitutive model within a finite element code by using multiscale approach and (3)

using this approach to analyze boundary value problems ranging over different scales. In

terms of chapters, the work of the thesis is organized as below:

Chapter 2 conducts an extensive literature background on the behavior of granular

materials, especially sands, and the instability-related phenomena in granular materials. The

focus is on experimental and numerical analysis of localized and diffuse instability. On

the other side, the necessity to investigate the micro-structure evolution and to develop the

constitutive model for granular materials based on this evolution are emphasized at the

beginning of this thesis.

Chapter 3 firstly reviews the micro-directional model (Nicot et al., 2005) and the H-

directional model (Nicot and Darve, 2011b) in two-dimensional conditions. Based on the

homogenization scheme of the H-directional model, a three-dimensional extension of the
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H-directional model is developed. To examine the novel model capability, calibration is

performed using drained triaxial experimental results from Ticino sand. Once calibrated,

the performance of this 3D-H model is then analyzed in prediction. Afterwards, the model

responses on confining stress dependent and void ratio dependent stress-strain relationships

are examined, based on which the critical state seems naturally captured. Finally, the model

mechanism is also inspected from a microscopic point of view. The evolution of micro

variables is analyzed at different strain states along a drained triaxial loading path.

Chapter 4 presents a multi-scale approach, where the 3D-H model is implemented within

an FEM code (ABAQUS), involving different scales spanning from microscale (grain scale)

to macroscale (structure scale). Each cell of the finite element mesh represents a REV

(intermediate scale). The 3D-H model acts on the elementary cell, to relate both local strain

and stress by taking the microstructure (microscopic scale) into account. Afterwards, a series

of drained biaxial tests are performed to analyze the occurrence of strain localization by

considering a plane-strain problem. Finally, a directional analysis is performed at some

selected material points of the BVPs, in order to carry out a stability analysis based on the

vanishing of the second-order work.

Chapter 5 introduces the mathematical framework used for the stability analysis, in

which the second-order work criterion is highlighted. Then, the effective multiscale approach

presented in Chapter 4 is applied to analyze geotechnical BVPs. Two cases of BVPs

are considered: a homogeneous specimen under homogeneous loading condition and a

strip footing problem as a non-homogeneous BVP. The aforementioned second-order work

criterion is applied to both cases to analyze the occurrence of instability. Finally, the stress-

strain (force-displacement) relations are analyzed not only on the macro-scale but also at

some selected Gauss points, highlighting the nature of failure mode (diffuse vs. localized

failure).
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Chapter 6 closes the thesis by pointing out the main findings of the research. Suggestions

for further investigations are also made.





Chapter 2

Background literature

This chapter briefly introduces the most salient aspects of the behavior of granular materials.

These characteristics include the contractancy-dilatancy, anisotropy and hardening-softening

mechanisms from a macroscopic point of view. In contrast, the features include material

and force fabrics, force-chain and meso-loops from a microscopic viewpoint. In addition,

this chapter presents a short but rather comprehensive review on current and past works

on instability from both experimental and theoretical viewpoints. Finally, this chapter

highlights the importance of developing micromechanically-based constitutive models, as

the macroscopic behavior stems essentially from microscopic features.
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2.1 Overall behavior of granular materials

Granular materials, as the object of this thesis, can be defined as a collection of (sometimes)

negligibly deformable particles whose microstructure is continuously evolving in terms of

deformation under a given loading path. Engineers and scientists have been investigating

granular material physics for centuries as evidenced by the pioneering works of (Reynolds,

1885) on particle interactions. Geomaterials, referring to granular materials like sand, show

some unique deformation characteristics in the static limit, those include dilatancy, anisotropy,

hardening-softening, shear localization and diffuse failure, to name a few (Guo, 2000; Zhu

et al., 2006). This section briefly reviews some of these features that relate to the failure of

geomaterials.

2.1.1 Contractancy and dilatancy

The notion of dilatancy includes negative dilatancy, which is also called contractancy. Dila-

tancy is the tendency of granular materials to change their volume at shear. This property,

first considered by (Reynolds, 1885), is of great importance. It is worth noting that upon

stress path reversal, dilatancy turns to contractancy which is of a magnitude larger than for

the previous dilatancy. Dilatancy represents the coupling between shear and volumetric

deformation mechanisms.

As a starting proposition of dilatancy models, the way in which plastic work is dissipated

has been initially investigated by the analysis of direct shear box test of sand assumed that the

entire input work is dissipated in friction (Taylor, 1956). This principle of energy dissipation

extended for the condition of triaxial tests by (Roscoe et al., 1963), gives:

p′dε
p
v +qdε

p
d = Mp′dε

p
d for loading

p′dε
p
v +qdε

p
d =−Mp′dε

p
d for unloading

(2.1)
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where p′ = (σ ′
a +2σ ′

r)/3 is the mean effective stress, q = σ ′
a −σ ′

r is the deviatoric stress,

and dε
p
v = dε

p
a +2dε

p
r is the volumetric strain increment. The superscript p denotes plastic

components, the deviatoric strain increment dε
p
d = 2(dε

p
a −dε

p
r )/3, and the subscripts a and

r indicate axial and radial directions, respectively, in a triaxial setup. M is the slope of critical

state line.

The right-hand term of Equations 2.1 represents the frictional dissipation energy, which

necessarily to be positive both in loading and unloading tests, but the value of dε
p
d should be

positive in loading and negative in unloading condition. Thus, Equations 2.1 can be rewrote

as a dilatancy equation:

dε
p
v

dε
p
d
= Mc − q

p′ for loading

dε
p
v

dε
p
d
=−Me − q

p′ for unloading
(2.2)

where Mc = 6sinφ0/(3− sinφ0) and Me = 6sinφ0/(3+ sinφ0) are the stress ratio corre-

sponding to zero dilatancy for loading and unloading, respectively, which is also termed as

the slope of phase transformation line (Ishihara, 1983) or characteristic line (Luong, 1980).

The parameter φ0 is termed as the phase transformation angle.

(Rowe, 1962, 1969) assumed that the input energy increment is proportional to the output

energy increment. In a loading test, the input energy increment is σ ′
adε

p
a and the output

energy increment is 2σ ′
rdε

p
r , and vice versa for an unloading test. Hence,

σ ′
a

σ ′
r
= K

(
1− dε

p
v

dε
p
a

)
for loading

σ ′
r

σ ′
a
= 1

K

(
1− dε

p
v

dε
p
a

)
for unloading

(2.3)

where K is the ratio of the input energy increment to the output energy increment.
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Because of the variation of experimental tests, a constant D is often introduced in

Equations 2.2, such as that proposed by (Anandarajah, 2008; Gajo and Wood, 1999; Jefferies,

1997; Li et al., 1999; Nova and Wood, 1982):

dε
p
v

dε
p
d
= D

(
Mc − q

p′

)
for loading

dε
p
v

dε
p
d
= D

(
−Me − q

p′

)
for unloading

(2.4)

The value of D is different for loading and unloading case. It has also been suggested

that the value of M is a function of density state (e.g. (Manzari and Dafalias, 1997)).

2.1.2 Hardening and softening

In the context of plasticity theory, strain softening under a three dimensional stress state can

be defined as a contraction of the yield surface in stress space with continuous shearing. The

concept can be expressed mathematically by the following equation, proposed by (Prevost

and Hoeg, 1975):

dεi j =Ce
i jkldσ

′
kl +h

∂G
∂σ ′

i j

(
∂ f

∂σ ′
kl

dσ
′
kl

)
(2.5)

where h is a parameter defined by Equation 2.5 (h> 0 corresponds strain hardening, h< 0

corresponds strain softening); Ce
i jkl is the elastic stiffness tensor; G is the plastic potential

function; and f is the yield function. h can be determined by the consistency condition

d f = 0.

However, the use of stress-space plasticity in modeling strain softening may present

certain theoretical and analytical difficulties. To overcome these problems, (Casey and

Naghdi, 1981) defined strain softening based on plasticity theory formulated in strain space.
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Based on (Casey and Naghdi, 1981), an elastoplastic material is said to experience hardening,

softening, or to exhibit perfectly plastic behavior during loading according to whether

f̂
ĝ > 0, for hardening

f̂
ĝ < 0, for softening

f̂
ĝ = 0, for perfectly plastic

(2.6)

where f and g are the yield functions defined in stress space and strain space respectively;

and f̂ and ĝ are yield functions related parameters.

Definitions of strain softening based on Equation 2.5 or Equation 2.6 require an elasto-

plastic constitutive model of the material as a priori. (Valanis, 1985) proposed the following

definition for strain softening:

Definition 1 If εi j is a parametric representation of strain path in strain space and σ ′
i j is the

corresponding stress path in stress space, a material is said to be softening at a point on the

strain path if, at this point dσ ′
i jdε ′i j 6 0.

This definition possesses a number of advantages in terms of total strains instead of

plastic strains; therefore the difficulties inherent in decomposing the measured total strain

into elastic and plastic components (Lo and Lee, 1990) is avoided. The definition is given in

incremental forms, hence it is dependent on the current directions of the stress- and strain

increment vectors only. The definition can be used without referring to a specific constitutive

model of soil. These features in this definition make it particularly suitable for investigating,

experimentally, strain-softening response along a wide spectrum of strain paths. Thus, strain

softening under axisymmetric conditions can be defined as:
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dε
p
s > 0 and dσ ′

i jdεi j < 0

or

dε
p
s > 0 and d p′dεv +dqdεs < 0

(2.7)

The first inequality in Equations 2.7 ensures that the sample has undergone a plastic deforma-

tion during strain softening. The second inequality of Equations 2.7 degenerates into dq< 0

for dσ ′
3 = 0, or d p′ = 0 or undrained tests. Under strainpath tests, the second inequality of

Equations 2.7 becomes:

dq< du
dεv

dε1
(2.8)

where u is the pore water pressure. For du> 0 and dεv/dε1 < 0, the given inequality requires

dq< 0. These conditions are consistent with the intuitive expectation of strain softening, as

dq< 0 has been used to refer to strain softening in the past. The dominate considerations in

choosing such a definition are in avoiding making assumptions as a priori and the ability to

reflect the influence, if any, of path on strain softening.

2.1.3 Anisotropy

In granular materials, particles are essentially assembled together through their spatial

arrangement and the resultant contact force fabric. These determine the micro-structure

of the material. Depending on the internal structure and distribution of contact normals,

granular materials may exhibit anisotropic response when they are subjected to external

loadings (Oda, 1972b,c). Two physical origins which give rise to this anisotropy can be

usually identified: the first one, called initial anisotropy or inherent anisotropy, is linked

to the usual deposit under the gravity of sedimentary soils; the second one, called induced

anisotropy is related to the loading path applied to the material considered. Initial anisotropy
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is related to the preferred orientation of non-spherical particles and concentration of contact

normals developed during the formation of the material. Induced anisotropy is developed

by the material in order to accommodate with the loading path. It is evident that material

anisotropy, or primarily material fabric, influences the deformation and strength properties of

the granular materials, which establishes its connection to the stress-dilatancy phenomenon

described before. These two kinds of anisotropy can be analyzed using global measurements

on the scale of the representative elementary volume. The effects of anisotropy can be

analyzed on elastic and as well as non-reversible characteristics (Cambou et al., 2004). For

example, (Hoque, 1996) has shown from experimental results performed on triaxial tests that

vertical and horizontal elastic moduli could be expressed as follows:

EV = EV0σnV
V

EH = EH0σnH
H

(2.9)

where σV (resp. σH) is the vertical (resp. horizontal) stress, EV (resp. EH) is the vertical

(resp. horizontal) elastic modulus, nV (resp. nH) is a non-linear exponent (with values not

so far from 0.5) and EV0 and EH0 are constants. Equation 2.9 shows clearly that for non-

isotropic loading paths the elastic behavior of granular materials experiences very significant

anisotropy.

2.2 Micro-structure analysis in granular materials

2.2.1 Fabric

A complete description of fabric in granular materials consists of two parts: one is the scalar

description; another covers the anisotropic information.
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Scalar fabric description

In the scalar fabric description part, there are two quantities, that are usually measured and

formulated into many theories. The one familiar to the geotechnical engineers is the void

ratio which is also an important state parameter in critical state soil mechanics (CSSM) (Li

and Dafalias, 2011). Another is the coordination number Z. In most cases, the coordination

number is defined as the average number of contacts per particle, i.e.:

Z = 2Nc/Np (2.10)

where Nc is the total number of contacts, Np is the total number of particles. The coefficient

2 is introduced due to the fact that one contact is shared by two particles. (Thornton and

Antony, 1998) proposed a more sophisticated definition of Z by removing rattlers from the

packing. The void ratio and the coordination number are closely related, while a direct

linkage between these two has not been found. For example, the void ratio can be used

to define the critical state line. But there is no evidence that the coordination number is

interchangeable with void ratio and defines a similar curve in Z − p plane. More interesting

findings on coordination number are reported by physicists (Song et al., 2008; Wang et al.,

2010).

Fabric anisotropy

As two significant fabric anisotropic parts in granular materials, the material fabric refers to

the contact network composed of all contact branches, while the force fabric is the network

through which forces transmit. Indeed, the material fabric is the basis of the force fabric and,

reversely, the force fabric can reconstruct the material fabric. The evolution and interaction

of these two fabrics are fundamental microscopic ingredients of the granular assembly. (Oda,

1972a,b,c), as a succession of works, first highlighted the importance of the material fabric.
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By considering the tomography technique on sections of resin-glued sand sample subjected

to a drained triaxial loading path, the author measured the material fabric and quantitatively

presented directions of individual contacts into a density distribution E(θ ,β ), where θ and

β are two coordinates in the spherical coordinate system, determining the contact direction.

E(θ ,β ) enabled the material fabric to be briefly described and compared at different strain

states. E(θ ,β ) was observed to increase its anisotropy with the increasing axial strain, the

direction of this anisotropy coincides with that of the axial strain. In these researches, the

significant effect of the fabric anisotropy on the material’s global mechanical responses was

illustrated with respect to three aspects: (1) both the mechanical and the volumetric responses

of the material were sensitive to the initial fabric anisotropy; (2) the stress anisotropy, i.e.

the stress ratio, and stress-dilatancy was quantitatively related to the fabric anisotropy; and

(3) the strain localization domain was highly associated with a localized value of the fabric

anisotropy.

(Rothenburg and Bathurst, 1989) investigated the evolution of the material fabric and the

force fabric in the biaxial test. The material fabric parameter α and force parameters αn and

αt are traced during loading. A relation between deviatoric stress and these fabric parameters

was theoretically derived and then experimentally proven, as given below:

σ1 −σ2

σ1 +σ2
=

1
2
(α +αn +αt) (2.11)

where σ1 and σ2 are the axial and the lateral stress eigenvalues, respectively. (Azéma et al.,

2007), in a numerical biaxial test on a pentagons assembly, also investigated the evolution of

α , an and at and examined Equation 2.11. Their results supported Equation 2.11.

However, all information on fabric is unable to describe the complete behavior of granular

material, because in this information, contacts are considered independently in an orienta-

tional distribution (or function), presenting neither organization nor relative displacement



18 Background literature

among each other. However, the strain in granular assemblies is derived from the relative

displacement not only between contacting grains but also among rearrangement of particles.

This means that the strain can be only derived on a scale competent to characterize the

organization among contacts that is, in other words, a scale larger than single contact scale.

On the other side, since the force fabric was evidenced, scientists gradually realized that the

force transmission in the granular material also presents an organization in a scale much

larger than the single contact scale, the so-called ’force-chain’, which will be mentioned

in the following subsection. It is far from possible to correctly formulate the evolution of

the force fabric only in an orientational function. Therefore, both material and force fabrics

are required to be investigated in a scale larger than the single contact scale but, of course,

smaller than the macro-scale, i.e. the so-called meso-scale. In this meso-scale, force-chains

and meso-loops (will be introduced later) can be identified, as relevant ways to characterize

respectively the force fabric and the material fabric. Furthermore, this meso-scale is also

a significant intermediate scale in developing micromechanically-based constitutive model

(introduced in chapter 3).

2.2.2 Force-chain

Force fabric shows significant heterogeneity patterns in granular materials due to the disor-

dered granular packing (Cambou et al., 2013). This phenomenon was first observed in the

experimental results of photoelastic materials (Dantu, 1968; Drescher and De Jong, 1972).

Similar observations can be found in Figure 2.1a, force fabric does not display homoge-

neously in granular materials but follows some column paths, establishing a connecting

network, showing a more obviously heterogeneous and anisotropic pattern than that of the

material fabric. This characteristic of granular materials was not investigated further until the

middle of the 1990s. (Jaeger et al., 1996) investigated the force fabric acting on the boundary
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particle by measuring spots left on the carbon paper by boundary particles. A decreasing

exponential density distribution of force magnitude was found.

Based on the average force in the granular materials, (Radjai and Roux, 1995; Radjai

et al., 1998) classified the strong force network and weak force network and also investigated

the organization of both. The weak network shows a uniform or power-law shape of density

distribution, whereas the strong network, as a complement to the weak network, displays an

exponential one (Mueth et al., 1998; Radjai et al., 1996). Further studies evidenced that the

exponential density distribution of strong network is sensitive to the grain size distribution

and to the initial state, being a leading characteristic of granular materials subjected to

external loading (Antony, 2000; Azéma et al., 2007; Blair et al., 2001; Erikson et al., 2002;

Mueggenburg et al., 2002; Mueth et al., 1998; Radjai et al., 1999; Silbert et al., 2002).

Generally speaking, heterogeneous force distribution persistently exists in the solid phase of

granular materials, whereas the fluid and gas phases are different (Jaeger et al., 1996). In

recent research, the jamming transition, a concept similar to the phase transition, was observed

to be highly associated to the formation of the heterogeneous force distribution (Behringer

et al., 2008; Kondic et al., 2012). In this context, the strong network is distinguished from

the weak network, then the concept of force-chain was proposed based on the strong network

to define those quasi-linear columns, consisting of contacts with a force magnitude greater

than the average.

Further investigations have shown the significant role the force-chains plays in the

macroscopic behavior of granular materials. (Iwashita and Oda, 2000; Oda and Iwashita,

2000) in numerical biaxial tests with the particle rolling resistance, investigated micro-scale

properties of granular assemblies with shear bands. They noticed the formation of shear

bands strongly related to the massive generation of force-chains during the hardening process

and their collapse in the softening process, accompanied with a volumetric dilatancy. Based

on results of numerical biaxial tests, (Tordesillas, 2007) analyzed the evolution of the void
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ratio around force-chains and the damage pattern of force-chain. Some pieces of evidence

about the link between force-chains and stress-dilatancy were found. This intriguing work

shed a light to answer the question that how the volumetric variation on the material fabric

influences the force fabric evolution. However, a reasonable answer requires a more precise

investigation on how force-chains and their surrounding structures interact with each other. A

priori, force-chains’ surrounding fabric should be characterized in a clear way with physical

meanings. The meso-loop, which will be introduced in the following, provides a promising

way in this aspect.

2.2.3 Meso-loops

(Satake, 1992) introduced an approach to associate discrete mechanical properties with

the continuum-mechanical ones. In this approach, as shown in Figure 2.1b, the contact

network seamlessly tessellates the material area into loops, which are enclosed by contact

branches and involves fan-shaped sections of particles and voids surrounded by particles.

Therefore, voids can be correctly quantified inside loops by local kinematical properties. This

approach gave a way of characterizing the material fabric by considering the microscopic

volumetric nature on the loop scale, namely a meso-scale. Then the loop can be also called

the meso-loop. (Bagi, 1993; Nguyen et al., 2012) expressed the stress on the meso-scale

as a volume average of the tensorial product of the contact forces and the contact branches.

This way of defining the meso-scale stress was satisfying only in static or quasi-static state,

otherwise, an inertial term should be involved according to the expression given by (Bagi,

1993, 1996; Cambou et al., 2000; Kruyt, 2003; Kruyt and Rothenburg, 1996; Nicot et al.,

2013). Several approaches were proposed to derive the average strain of the material from

relative displacements on contacts and geometrical quantities of loops. Results proved that

the global strain can be correctly presented from the local kinematics of the meso-loops.

(Nguyen et al., 2009) gave a definition of the strain on the meso-loop. This meso-scale
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(a) Force fabric in the granular assem-
bly made up of photoelastic material, in
a simple shear test. The brightness of
light lines presents the force magnitude
(Majmudar and Behringer, 2005).

(b) Contact network composed of contact branches
in the 2D granular assembly. Black continuous lines
are contact branches, gray disks are grains (Zhu,
2015).

Figure 2.1 Force chain and meso-loops

strain facilitates researchers to make the analysis on the meso-scale, by characterizing the

meso-scale kinematics into a continuum-mechanical form which researchers are familiar

with.

2.3 Instability in granular materials

Instabilities in geomechanics manifest themselves through mainly two failure modes: local-

ized and diffuse. For example, a natural slope may undergo large displacements as a result

of strains either localizing into shear bands or developing in a diffuse mode throughout its

whole mass. With respect to strain localization, there are different forms of concentrated

deformations such as shear bands, compaction bands, and dilation bands (Rudnicki and Rice,

1975; Sulem and Vardoulakis, 2004; Vardoulakis et al., 1978). The significance of these

typically narrow zones of intense shearing and inhomogeneous strains has been recognized

for decades both at macro-scale (geotechnical problems) and micro-scale (lab experiments)

(Desrues and Viggiani, 2004). Only in recent years, this form of failure with self-conducted
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concentrated deformations into narrow zones has been viewed as a bifurcation problem

(Alshibli et al., 2003). The related bifurcation at the material point level is usually triggered

around the peak response of a strain softening material or at the plastic limit failure state

(Bésuelle and Rudnicki, 2004).

On the other side, it has been recently found that another type of instability can appear

well before plastic localized failure is reached (Darve, 1994). This means that other forms of

failure may as well occur within the Mohr-Coulomb plastic limit surface. For example, when

loose sand is sheared along undrained loading paths, it may collapse as a result of a loss in

stress far from the plastic limit surface. In this type of instability, known as diffuse instability,

no occurrence of strain localization is visible but a rather broadly failure takes place.

In both localized and diffuse instability cases, the problem underlies a material instability

phenomenon which originates in the small scale due to the micro-structure characteristics

of the granular material. At such a microscale, mechanisms of energy dissipation and force

chain buckling lead to local instabilities that reflect at the macroscopic scale through a

dilatancy behavior, strain localization, or liquefaction, among others.

2.3.1 Experimental observations

A variety of experimental studies has been performed in the recent decades to investigate

both localized and diffuse failures in geomechanics (Castro, 1969; Chu et al., 2003; Darve

et al., 2007; Desrues et al., 1996; Finno et al., 1997; Vardoulakis, 1980; Wang and Lade,

2001). Methods to recognize and observe failure in granular material specimens include

conventional procedures such as the installation of extensometers, or more sophisticated

techniques such as Computed Tomography and False Relief Stereophotogrammetry (Alshibli

et al., 2003; Desrues and Viggiani, 2004; Viggiani et al., 1994). The last two techniques

have contributed to interpreting the many interfering and controlling aspects that lead to the
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(a) (b)

Figure 2.2 Localized strain under plane strain conditions: (a) Soil specimen before com-
pression, (b) Deformed specimen after 9.6% and 19% axial strain (after (Alshibli et al.,
2003))

strain localization and diffuse failure. These techniques allow the mapping of the external

and internal structure of the deformed material.

To evidence localized instability in the experimental setting, one can refer to the plane

strain compression drained test illustrated in Figure 2.2. In this test, deformations are only

allowed to occur along two direction components, say x (horizontal) and y (vertical). The

specimen is first consolidated to an initial isotropic stress state under drained conditions

and then is axially loaded along the y-direction through a servo-controlled device while

confining stress on x-direction is kept constant. Figure 2.2 shows a sample of medium-dense

Ottawa sand tested under plane strain conditions (Alshibli et al., 2003). Planar zones with

concentrated deformation developed after 9.6% and 19% axial strain. The formation of such

bifurcated instability led the sample to the softening behavior and consequent decrease in

strength. Additionally, a conventional triaxial compression test also on F-75 Ottawa sand is

shown in Figure 2.3 (Alshibli et al., 2003). Computed tomography and other digital imaging

techniques were used to study the development and evolution of shear bands.

Shear banding is a complex phenomenon whose formation and propagation are influenced

by a series of factors such as boundary and drainage conditions, stress and density levels,
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(a) (b)

Figure 2.3 Localized strain under triaxial drained compression: (a) Soil specimen at 25%
axial strain, (b) CT scans at 25% axial strain (after (Alshibli et al., 2003))

strain history, anisotropy, among others. Experimental observations made by (Alshibli

et al., 2003; Desrues and Viggiani, 2004) revealed that confining pressure is the main factor

influencing the instability during compression. Localization of deformations developed

sooner (i.e. at smaller overall axial strain) for specimens subjected to lower confining

pressure compared to those tested at higher confining pressure (Figure 2.4). Similar findings

were reported by (Han and Drescher, 1993), which investigated the effects of the confining

pressure on the onset of shear bands by performing a series of experiments on poorly graded

Ottawa sand with rounded particles. It found that the shear strain at the initiation of shear

band formation increases when the confining pressure increases too.

Some other factors that influence the pattern of shear bands include size, uniformity

and angularity of grains, specimen density, size and slenderness, the method of preparation

and anisotropy. Many experimental works have been carried out in order to identify and

quantify these factors. For example, (Alshibli et al., 2003) investigated the dependence of

the overall stress-strain behavior on the specimen’s density and sand grain texture on the

resulting failure mode. They performed plane strain tests on three different types of sand,

namely, F-sand obtained from the Ottawa Industrial Silica Co; M-sand, obtained from Unimin
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Figure 2.4 Experimental results on dense Hostun sand for biaxial drained tests at different
confining pressures (after (Desrues and Viggiani, 2004)).

Corp; and C-sand, obtained from the Connecticut Silica Co. F-sand is a rounded, uniform

and fine-grained sand; M-sand is an industrial subangular, uniform medium-grained sand;

whereas the third sand is an angular, uniform, crushed silica. According to their findings, it

appears that higher particle interlocking, which is dependent on grain angularity, requires

higher strains to fully mobilize friction along a well-defined shear band, which reduces the

possibility of sudden slip mechanisms. The influence of confining pressure on strength and

stability decreases as grain angularity decreases. They also reported that packing density

has a relatively greater effect on the strength and stability behavior of medium-grained sand

compared to fine and coarse sands. For the fine sand, the confining pressure is the main factor

affecting the specimen’s stability. (Desrues and Viggiani, 2004) observed that, for a given

mean stress, shear bands are more precipitous in dense specimens than in loose specimens.
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Lastly, the importance of anisotropy of sand deposit was pointed out by (Lade and Wang,

2001). They verified that a specimen created by deposition in the vertical direction, when

tested with the major principle stress in the vertical direction, has a tendency to form shear

bands more in the horizontal direction than it would have in an isotropic deposit.

Diffuse instability in the lab experimental setting has its origins in two well-known

tests, namely, the consolidated undrained triaxial compression test and the constant shear

(q-constant) test. In the former, the specimen is first consolidated to an initial isotropic stress

state under drained conditions, and then is axially loaded through a servo-controlled device

while confining stresses are kept constant (Casagrande, 1975; Castro, 1969; Chu et al., 2003;

Lade, 1992; Verdugo and Ishihara, 1996). In the latter, after the initial isotropic consolidation

and conventional shear drained phases up to a prescribed stress state, the soil specimen is

loaded at constant deviatoric stress while mean effective stress is reduced. This stress path is

followed during water infiltration in slopes where external loads remain unchanged but pore

pressure increases slowly (due to the fact that the volume is more or less constant, especially

in fine soils) to eventually cause failure (Anderson and Riemer, 1995; Brand, 1981; Iverson,

1997; Sasitharan et al., 1993).

The set of experimental data presented by (Chu et al., 2003; Leong, 2002) is re-examined

for illustration purposes. This data set comprises a thorough lab experimental study on

dredged marine sand from Singapore. The authors carried out undrained tests and q-constant

tests on loose and dense soil states. Figure 2.5 shows various results from undrained triaxial

compression tests for different initial void ratios. These results reveal the unstable response

of the specimens after reaching maximum values for the deviatoric stress. The (so-called)

instability lines drawn in the figure join the origin to these peak values as defined in accord

with (Lade, 1993). These lines are not unique. Here, their dependence on the initial void

ratio is evident.
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Figure 2.5 Experimental results from several undrained triaxial compression tests for different
initial void ratios (after (Chu et al., 2003)).

2.3.2 Theoretical advances

From a theoretical viewpoint, by considering the energy conservation law in continuum

mechanics, (Mandel, 1966) expressed with a Lagrangian formalism and a two-order time

differentiation (Nicot and Darve, 2007; Nicot et al., 2007a), it is possible to obtain the kinetic

energy as a function of the external and internal second-order works (Nicot et al., 2017).

The second-order work criterion was initially introduced by (Hill, 1958) as an insta-

bility criterion, with the meaning that the material will continue to deform at least in one

stress–strain direction without any external input of energy (see also for example (Bigoni,

2000; Petryk, 1993) for a review of this issue). This means that a certain failure mode can

be triggered. Later on, it appears (Bigoni and Hueckel, 1991; Nicot and Darve, 2011a;

Valanis, 1989) that the second-order work criterion (vanishing value of the determinant of

the symmetric part of the elasto-plastic matrix) contains the particular cases of the strain
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localization criterion (vanishing value of the determinant of the acoustic matrix) and the

plastic limit criterion (vanishing value of the determinant of the elasto-plastic matrix). It

was observed (Li and Richmond, 1997; Li and Karr, 2009) that in initially homogenous

materials obeying a nonassociated flow rule (the elasto-plastic matrix is non-symmetric).

Thus, if flutter instabilities are not considered, the second-order work criterion is the first to

be encountered (according to a monotonously increasing loading parameter) (Challamel et al.,

2009, 2010) and the other criteria are simply particular cases within the bifurcation domain.

The vanishing values of the determinant of the symmetric part of the elasto-plastic matrix

corresponds to the internal boundary of the bifurcation domain (Darve et al., 2004; Neilsen

and Schreyer, 1993; Sibille et al., 2007), while its external boundary is the plastic limit

condition. Thus the second-order work criterion can be considered a necessary condition for

failure (flutter instabilities excluded) according to these theoretical results. This conclusion

was also verified in experiments (Darve et al., 2007) and very carefully checked by direct

numerical simulations of failure with a discrete element method (Sibille et al., 2008).

It is essential to note that the second-order criterion by itself does not provide a sufficient

condition for failure. But when second-order work vanishes along a loading path, the material

may become unstable with a bifurcation from a quasi-static regime towards a dynamic

regime. By definition, the second-order work vanishes at the plastic threshold, but it may also

vanish below the plastic threshold in granular materials as a result of the asymmetry of the

constitutive tensor, reflecting the fact that the direction of shear strain is independent of the

yield surface (given by the internal angle of friction). As a consequence, the potential energy

stored in the granular configuration by dilation may in principle transform spontaneously

to shear deformation so that the material may keep deforming without further energy input.

In contrast to localized structures appearing prior to failure in the form of shear zones or

compaction bands at the plastic threshold, the failure appearing in the bifurcation domain

below the plastic threshold is homogeneous or diffuse, in close analogy with liquefaction
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where the instability fully spreads to the bulk as a consequence of load transfer from the

contact network to the pore liquid (Lade, 1992).

Moreover, it is worth noting that, in grain avalanches, strong correlations have been

observed repeatedly in discrete element simulations (Darve et al., 2004) between second-

order work and kinetic energy. From a spatial point of view, the area where the second-order

work computed on the particle scale takes negative values coincides with the area of bursts

of particle kinetic energy. The second-order work computed on the particle (or the contact

between particles) scale is also referred to as the discrete second-order work, to emphasize

that it is computed from local variables, contrary to the macroscopic second-order work

computed in the continuum. From a temporal point of view, by considering the changes over

time of the total kinetic energy and the total second-order work for all the particles, the peaks

of kinetic energy correlate very well with the negative minima of the second-order work.

So far, most investigations have dealt with the material point scale, or with homogeneous

specimens subjected to homogeneous loading paths. Extending the second-order work

formalism to more general boundary value problems remains an open, and important, issue.

At the same time, this challenge is of paramount importance in view of making this approach

efficient for engineering purposes. (Nicot et al., 2017) demonstrates how the second-order

work approach can be conveniently extended to boundary value problems, where the internal

and external second-order works are computed based on the mechanical parameters (forces,

displacements) acting on the boundary of the system only, without requiring any information

inside the system. This is a great advantage since these boundary parameters are generally

accessible.
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Figure 2.6 Principle of simple critical-state based model of sand (after (Wu et al., 2017)).

2.4 Constitutive modeling of granular materials

In soil mechanics, many phenomenological models were developed to describe complex

phenomena. These models constantly involve enriched and complex mathematical equations

introducing a great number of parameters to describe different observed phenomena. Some

typical phenomenological models are reviewed here such as elastoplastic theories (Drucker

and Prager, 2013; Hill, 1967; Rice, 1970, 1975; Yao et al., 2008), endochronic models

(Bažant, 1978), hypoplastic theories (Kolymbas, 1991), and incrementally nonlinear models

(Darve, 1990; Darve et al., 1995). For example, (Yin et al., 2013) developed a simple critical

state based model (the so-called SIMSAND model) which can well capture the macroscopic

behavior of different kinds of real sands. The yield surface used in this model can be plotted

in p′−q and e− p′ plane, as shown in Figure 2.6.

With the deepening of the microscopic mechanism of granular materials, researchers

started building the constitutive relation by considering micro-mechanisms. One kind of

approach builds the constitutive relation still in a phenomenological framework, such as
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in the framework of elasto-plasticity, but introducing the fabric-related parameters into

the constitutive formulations. (Li and Dafalias, 2011) extended the critical state theory

(Shigeto and Sakai, 2011) by achieving the critical state through a constant fabric instead

of the constant stress or volumetric strain. Under this framework, the critical state fabric

anisotropy was investigated by (Guo and Zhao, 2013b; Zhao and Guo, 2013), giving the

critical state relation between the fabric anisotropy parameters and the hydrostatic pressure.

Then, several constitutive relations (Gao and Zhao, 2012; Gao et al., 2014) were built based

on this framework by involving fabric anisotropy parameters. This kind of approach only

adjusted the phenomenological framework by considering some parameters with micro-

physical meaning. However, the macroscopic relations did not stem from their microscopic

essences but still from empirical relations.

On the contrary, an increasing sight can be found in microscopic modeling and multi-scale

approaches on both numerical and experimental sides, with the development of microscopy

technology and X-ray tomography (Fonseca et al., 2014). It is an alternative way to consider

that the variety of constitutive properties stem essentially from the granular character (Cam-

bou et al., 1995; Chang et al., 2009; Kruyt and Rothenburg, 2002). The multi-scale approach

sophisticatedly links the macroscopic quantities with the static and kinematic aspect of the

fabric by crossing the scales. (Chang and Misra, 1989; Chang et al., 1992), in their pioneering

work, respectively related the incremental stress and strain to the contact force and the contact

based on the contact fabric distribution E(θ ,β ) (see subsection 2.2.1). After that, various

constitutive models (Chang et al., 1990; Yin et al., 2011a,b) were proposed for different

kinds of soil, following similar methods as that proposed by (Chang and Misra, 1989; Chang

et al., 1992). The difference only lied in the form of the initial density distribution for the

contact fabric. (Emeriault and Cambou, 1996) clarified the general framework of deriving

the constitutive relation for granular materials, involving three parts: the strain localization

(or averaging) scheme, to determine the local kinematical variables from the global strain (or
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reverse); the local constitutive relation, to link the local static quantities to the local kinematic

quantities (or reverse); and the stress averaging (or localization) scheme, to solve the global

stress from local quantities (or reverse). In this work, representation theorem (Spencer, 1987)

was applied to formulate the relation between the local kinematics and the global strain.

Combining with the stress homogenization scheme, a micro-mechanical model was derived

from a non-linear elastic model, the Hertz-Mindlin model (Mindlin, 1953).

So far, the aforementioned constitutive models were usually developed based on the ho-

mogeneous condition (or a representative elementary volume), requiring to be implemented

in view to solve geotechnical engineering problems. From a historical point of view, geotech-

nical engineering problems were empirically solved until a series of theoretical advances

was proposed by pioneers in soil mechanics in the early 20th century. They are well known

today as bearing capacity theory, consolidation theories, limit theorem (Drucker et al., 1952;

Prager, 1952; Taylor, 1948; Terzaghi, 1943). However, these oversimplified theories are

sometimes not suitable for most geotechnical issues due to the complexity of the problems

including nonlinearities and coupled mechanisms. Since 1960s, computers and numerical

tools were made accessible to geotechnical engineers. Several classes of numerical methods

have been developed to handle geotechnical engineering problems including:

(i) discrete approaches that explicitly describe inter-particle contact behavior among the

granular assembly such as the discrete element method (DEM) (Cundall and Strack,

1979),

(ii) continuum approaches that characterize path-dependent responses with internal vari-

ables and constitutive laws on the macroscopic scale such as the finite element method

(FEM) (Courant, 1943; Hrennikoff, 1941), and

(iii) multiscale approaches that build a constitutive relation on the specimen (material point)

scale by taking microstructure information into account.
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The continuum approach has been widely used to solve geotechnical engineering problems

by employing phenomenological elastoplastic models which can successfully simulate the

macroscopic behavior of granular assembly. Unfortunately, they do not give access to the

microscopic scale in order to investigate or interpret micro-mechanisms. On the other side,

the discrete approach indeed provides a simple way to do it but it is also computationally

intensive to resolve the aforementioned deficiencies of continuum approaches for simulating

geotechnical engineering problems.

To overcome this issue, various multiscale approaches have been proposed to couple grain-

scale simulations with macroscopic continuum-scale finite element analysis. For instance,

(Wellmann and Wriggers, 2012) introduced an Arlequin DEM-FEM model that divides the

spatial domain into discrete and continuum sub-domains. The interaction between discrete

and continuum sub-domains is assumed by overlapping with each other so that artificial

reflections can be provided. (Li and Wan, 2011) proposed bridging scale method, which uses

a handshake domain to couple particulate model with a higher-order continuum description.

(Andrade et al., 2011; Guo and Zhao, 2014; Miehe et al., 2010; Nguyen et al., 2014; Nitka

et al., 2011; Stránskỳ and Jirásek, 2012) proposed a conceptually similar approach where the

DEM solver is used at Gauss points of the finite element mesh as a representative elementary

volume (REV). Nevertheless, these DEM-FEM methods have a limitation when geotechnical

engineering problems are considered due to the fact that a great number of particles need

to be contained in a boundary value problem (BVP) in order to reach local convergence. It

makes these methods waste computational resources resulting in inefficient simulations.

From microscale to BVPs (boundary value problems), the multi-scale approach can

effectively link a continuum-based method to a discontinuum-based method. Generally, the

FEM (finite element method) is considered to solve the BVP on the macro-scale, while the

DEM (discrete element method) (Cundall and Strack, 1979; Radjaï and Dubois, 2011) is

usually considered effective to capture and describe the behavior on the micro-structural scale.
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Both are leading trends of numerical simulation and sometimes can be beneficially coupled.

For example, an FEM×DEM scheme is implemented to simulate the slope stability and strain

localization problems (Meier et al., 2008, 2009). However, a continuum-based assumption

(Taylor assumption (Voigt, 1889)) is employed on the micro-scale, which may lead some

limitations for a granular medium. (Andrade and Tu, 2009; Andrade et al., 2011) proposed

a discrete-continuum method based on a numerical homogenization scheme to simulate

the strain localization problem in granular materials. This approach utilizes a classical

plastic model on the macro-scale involving two phenomenological parameters (friction angle

and dilation angle), which are transferred from the micro-scale. (Chang and Yin, 2009;

Chang et al., 2010; Yin et al., 2009, 2010a, 2011a, 2014) proposed micromechanically-based

models adopting static hypothesis and were successfully used to simulate various behaviors

of granular soils from sand to clay. More recently, (Guo and Zhao, 2013a) proposed a

multi-scale modeling framework for granular media based on a hierarchical cross-scale. This

framework is also implemented to simulate a variety of engineering problems including

hydro-mechanical problems (Guo and Zhao, 2014, 2016a,b).

2.5 Concluding remarks

Based on the comprehensive literature review presented above, the following concluding

remarks are highlighted:

• A constitutive model for granular materials has to account for their complex mechanical

behavior that originates from non-linearity together with density, stress level and strain

history dependencies in relation with development of anisotropy. As the richness of

the material description increases, the analysis makes it possible that non-uniqueness,

bifurcation and material instability naturally emerge as subtle distinctive features of

failure.



2.5 Concluding remarks 35

• Both the force and material fabrics only exist on the meso-scale and on larger scales,

any smaller scale will blind to capture them. In order to build the proper constitutive

model with the multiscale approach, the meso-scale should be a significant part, linking

the microscopic variables and the macroscopic quantities.

• Conventional methods of analysis lack the ingredients that allow them to capture the

fundamental mechanics of granular materials. More advanced techniques, such as the

multiscale approach, need to be employed. In this perspective, it is essential to equip

the Finite Element Method with a robust constitutive model that captures the proper

behavior of granular materials.





Chapter 3

An extended micromechanically-based

model for granular materials

A fundamental task of the mechanics is to translate knowledge and observations into the

mathematical relations, those are capable of predicting or simulating the reality. Granular

materials usually react with complicated mechanical responses when subjected to exter-

nal loading paths. This leads to sophisticated constitutive formulations requiring large

numbers of parameters. A powerful and straightforward way consists in developing micro-

mechanical models embedding both micro-scale and meso-scale. This chapter proposes

a three-dimensional micro-mechanical model taking into account an intermediate scale

(meso-scale) which makes it possible to describe a variety of constitutive features in a natural

way. The comparison between experimental tests and numerical simulations reveals the

predictive capability of this model. Particularly, several simulations are carried out with

different confining pressures and initial void ratios, based on the fact that the critical state

is quantitatively described without requiring any critical state formulations and parameter.

The model mechanism is also analyzed from a microscopic view, wherein the evolution of

some key microscopic parameters is investigated.
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3.1 Reviews of the micro-directional models

Complex constitutive characteristics have been observed and investigated for granular materi-

als, such as a highly incrementally non-linear constitutive behavior (Darve, 1990; Darve et al.,

1995), the existence of the non-associate flow rule, the existence of a bifurcation domain

within the plastic limit (Darve et al., 2004; Nicot et al., 2009). Taking the advantage of these

constitutive characteristics, large numbers of phenomenological models have been proposed

in recent decades. In this kind of models, attempts are made to transform different observed

phenomena into mathematical expressions, for example: elasto-plastic theories (Drucker and

Prager, 2013; Hill, 1967; Rice, 1970, 1975), endochronic models (Bažant, 1978), hypo-plastic

theories (Kolymbas, 1991), and non-linear incremental models (Darve, 1990; Darve et al.,

1995). Phenomenological models normally involve sophisticated constitutive formulations

requiring large numbers of parameters, moreover, most of these parameters lack physical

backgrounds.

Building a constitutive relation in a natural way is a challenge, namely, taking into account

the constitutive features at smaller scales, from which the macro-scale behavior of materials

stem. In order to link the macro-scale to a smaller scale, it is inevitable to seek a suitable

scale, to which macroscopic behaviors can be comprehensively associated. The subsequent

revisited micro-directional models consist of the micro-directional model (Nicot et al., 2005)

and the H-microdirectional model (or H-model) (Nicot and Darve, 2011b). The former builds

the force-displacement relation on the grain scale (micro-scale) while the latter takes into

account constitutive relations on the granular cluster scale (meso-scale). They were initially

developed to describe the mechanical behavior of snow (Nicot, 2003). The micro-directional

model was then generalized to any type of granular assembly, with a particular emphasis on

frictional granular materials (Nicot et al., 2005).
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3.1.1 The micro-directional model

Building the constitutive relations of granular materials with a multi-scale approach requires

the stress and strain tensors to be related on the micro scale. Basically, a granular assembly

with applied loads to boundary grains will evolve with the change of boundary conditions.

The evolution of grains follows Newton’s law, with repulsive forces between grains that are

not nil when contact exists. The boundary grains firstly move according to the mechanical

imbalance. Thus, these displacements progressively disturb the internal balance according

to Newton’s second law and the granular assembly rearranges. As a consequence, the

mechanical response of a granular assembly results from dynamical mechanisms governing

the motion of each particle constrained by the existence of adjoining particles. This is exactly

the leading principle of discrete element models (Cundall and Hart, 1992). However, high

degree of freedom in the resulting nonlinear differential equation system implies that it is

merely impossible to obtain the analytical solution of the problem.

To simplify the differential equation system, some assumptions are introduced. In the

micro-directional model, all grains of the granular assembly are considered to be spherical.

The specimen is described as a distribution of contacts oriented along each direction of the

physical space. All contact directions are independent of each other. Thus, the constitutive

relation of the micro-directional model can be decomposed in three steps as shown in the

general homogenization scheme (Figure 3.1),

(1) Kinematic localization:

δun = 2rgδεi jnin j

δut = 2rgδεi jnit j

(3.1)
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Figure 3.1 General homogenization scheme of the micro-directional model (Cambou et al.,
1995).

where δun and δut respectively denote the incremental relative displacement along the

normal direction n⃗ and along the tangential direction t⃗ to the idealized contact plane, rg

denotes the mean radius of the spherical grains, δεi j is the incremental macrostrain tensor.

(2) Contact law: The local behavior is selected according to the granular material in hand.

For granular soils, an elasto-perfect plastic model can be implemented, relating the local

normal force Fn to the local normal relative displacement un as well as the local tangential

force Ft to the local tangential relative displacement ut . Besides, this contact law includes a

Mohr-Coulomb criterion and can be expressed under the following incremental formalism,

which introduces a normal elastic stiffness kn and a tangential elastic stiffness kt , both

constant, and a local friction angle ϕg.


δFn = knδun

δ F⃗t = min
{∥∥∥F⃗t + ktδ u⃗t

∥∥∥ , tanϕg (Fn +δFn)
}
× F⃗t + ktδ u⃗t∥∥∥F⃗t + ktδ u⃗t

∥∥∥ − F⃗t
(3.2)
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(3) Stress averaging: The stress tensor for a representative elementary volume (REV)

packing is homogenized based on the Love’s formula (Christoffersen et al., 1981; Love,

1927; Mehrabadi et al., 1982)

σi j =
1
V

Nc

∑
c=1

Fil j (3.3)

where l⃗ is the branch vector joining the centers of particles in contact on contact c, F⃗ is the

contact force, and the sum is extended to all the Nc contacts occurring in the REV of volume

V.

In multi-scale approach, when the contact fabric arranging along different directions is

quantified by ω (⃗n), the density of contacts along direction n⃗, Equation 3.3 can be transformed

into:

σi j = 2rg

∫∫
D

F̂in jω (⃗n)dΩ (3.4)

where dΩ is the infinitesimal solid angle, which varies in the integration surface D. F̂i is the

ith coordinate of average force of all contacts along the direction represented by the unit

vector n j. Differentiation of Equation 3.4 gives,

δσi j = 2rg

∫∫
D

δ F̂in jω (⃗n)dΩ+2rg

∫∫
D

F̂in jδω (⃗n)dΩ (3.5)

The material fabric in the assembly may evolve state by state. This evolution is described

by the change of the distribution ω (⃗n), indicating that the contact density varies along each

direction. When acting as a key function in the expression of the stress, ω (⃗n) is significant

in this model because it not only presents the arrangement of the material texture, but also

prominently controls the mechanical response of the material. In fact, several empirical

relations can be used to predict the value of ω (⃗n) by referring to different mechanical

properties of the material (Chang, 1987; Chang et al., 1990; Yin et al., 2010b, 2011b). In
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this model, the relation reported by (Calvetti et al., 1997; Oda, 1972a; Oda et al., 1980) is

included inside, in order to calculate the number of contacts along a given direction at each

step, from the incremental strain. This relation assumes the contact number increasing in the

contractant directions and decreasing in the dilatant ones, as follows:

δω (⃗n)
ω (⃗n)

= α(δ ¯̄ε : n⃗) · n⃗ (3.6)

where α is an adjustable coefficient for different materials. The meaning of this function is

that during a quasi-static loading, the fabric follows the variation of the strain, and the stress

response subsequently adjusts according to the fabric. Consequently, in the implementation

of this model, when an incremental strain is given, both fabric and stress evolution can be

also determined.

3.1.2 From the micro-directional model to the H-model

The micro-directional model was shown to be powerful and convenient, allowing realistic

simulation of most of the standard loading paths. This is due to the two fundamental

assumptions ordered in terms of strain kinematic localization: (1) there is an affine relation

between global strain and local deformation inside material, making the global strain to be

projected into each direction of the space in order to obtain local deformation; (2) contacts

in different directions evolve independently from each other. However, "Every coin has

two sides", these two assumptions are foundations of the micro-directional model, bringing

advantages as well as limitations.

The first assumption can be alternatively rewritten as that: the inter-particle contact fabric

only depends on the global strain, however, this is mostly contradictory to the reality. As

referred in (Zhu, 2015), the global strain stems not only from the deformation between

contacting particles, but also from the fabric rearrangement inside the material. From a meso-
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scale point of view, three parts contribute to the global volumetric strain in 2D conditions:

the relative displacement on the contact, the conversion between different categories of

meso-loops and the area variation of meso-loops caused by the shape changing. Moreover,

the latter two parts cannot recover during the unloading, deriving the plastic volumetric

strain.

However, the fabric rearrangement does not contribute to the global strain in the micro-

directional model, leading to two consequences: due to the ignorance on the part of strain

deriving from the fabric arrangement, there is an underestimation toward the volumetric

contractancy or, inversely, an overestimation toward the dilatancy; the incremental strain

is totally assigned to the local displacement, causing an overestimation of the local contact

deformation and, consequently, an excessive stress. There is therefore an exceedingly higher

stiffness than in reality.

3.1.3 The H-microdirecitonal model (H-model)

As an extension of the micro-directional model, the H-microdirectional model was developed

to describe the constitutive relation of granular materials by taking into account the local

geometrical interaction between grains (Nicot and Darve, 2011b). The main limitation of the

micro-directional model is that the deformation on the contact level corresponds to the strain

on the macroscopic (specimen) scale. (the so-called affine approximation)

To overcome this limitation, a hexagon pattern (meso-scale) takes the place of the single

contact to be the directional element constituting the material fabric on the meso-scale. The

hexagon, as shown in Figure 3.2, consists of six particles with identical radius. A fundamental

assumption of the hexagon pattern should be declared, that the hexagon is fully symmetric

with respect to axis n⃗ and t⃗. The quasi-static equilibrium of the hexagon can be reached under
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the symmetric external forces. Thus, only the mechanical balance of two grains, denoted by

grain 1 and 2, is needed to be solved.

The local geometrical configuration of the hexagon pattern is illustrated in Figure 3.3, in

which numbers label the particle centers. The length along n⃗ and the width extending laterally,

along t⃗, are respectively denoted by l1 and l2. Due to an axi-symmetrical configuration, the

local kinematics of one hexagon is described by only three independent variables: two branch

lengths, d1 and d2, which are initially equal to 2rg, and an opening angle α between branch

l⃗21 and n⃗. The opening angle α embedded in the hexagon pattern is a significant parameter,

highly relating the deformation and the void ratio of the hexagon, and therefore, used to

calibrate the volumetric strain of the specimen. In the H-model, the void ratio of a hexagon

is expressed as:

e(⃗n) =
4sinα(1+ cosα)

π
−1 (3.7)

Different with the micro-directional model, particle rearrangement can be reflected by

updating the opening angle in each hexagon, which evolves during the loading path.

In terms of local static variables, as shown in Figure 3.3, the symmetry and the equilibrium

of this system are ensured by external forces F1 and F2, exerted respectively symmetrically

in the directions of n⃗ and t⃗. Three independent variables in terms of the contact force,

which form the entire local static information, can be identified: N1 and T1, the normal and

tangential force between particle 1 and 2, and N2, the normal force between particle 2 and

3. To maintain the axi-symmetry around the axis t⃗, the tangential displacement and force

between particle 2 and 3 are eliminated. These internal static variables are related to three

local kinematic variables in an incremental form by the elasto-frictional law:
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Figure 3.2 The hexagonal element of the H-directional model.

δN1 =−knδd1

δN2 =−knδd2

δT1 = min{|T1 + ktd1δα|, tanφg(N1 − knδd1)}ξ −T1

(3.8)

where ξ is the sign of T1 + ktd1δα , kn and kt are normal and tangential contact stiffness,

respectively.

A series of hexagons, instead of single contacts in the microdirectional model, distribute

along different orientations, also following a directional distribution ω(θ) in a polar system,

where θ is the rotation angle of n⃗, i.e. n⃗ = cosθ x⃗1 + sinθ x⃗2 . An affinity on the deformation

is also assumed. The incremental of hexagonal lengths, expressed by δ l1 and δ l2, is related

to the global incremental strain δεi j:

δ l1 =−l1δεi jnin j =−l1(δε1n2
1 +δε2n2

2)

δ l2 =−l2δεi jtit j =−l2(δε1t2
1 +δε2t2

2)
(3.9)
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Figure 3.3 Mechanical description of hexagon pattern.

where, restrained by the symmetrical configuration, the material is assumed not to rotate,

namely ¯̄
δε =

 δε1 0

0 δε2


The local constitutive relation formulates the behavior of an individual hexagon, deter-

mining incremental internal forces, when the incremental lengths, δ l1 and δ l2, are given.

The local geometrical compatibility reads:

l1 = d2 +2d1 cosα

l2 = 2d1 sinα

(3.10)

Equations 3.10 transformed in incremental form give:

δ l1 = δd2 +2δd1 cosα −2d1 sinαδα

δ l2 = 2δd1 sinα +2d1 cosαδα

(3.11)

The balance condition on particle 2 along direction n⃗ yields:
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N2 = N1 cosα +T1 sinα (3.12)

and under an incremental form,

δN2 = δN1 cosα −N1 sinαδα +δT1 sinα +T1 cosαδα (3.13)

Substituting Equations 3.8 into Equation 3.13 gives the balance equation expressed by

kinematic variables in an incremental form. Combining with incremental compatibility

Equations 3.11 yields a linear system relating δd1 and δd2 to incremental internal kinematic

variables, d1, d2 and α ,


2cosα 1 −2d1 sinα

2sinα 0 2d1 cosα

cosα +A −1 (N1−B)sinα−T1 cosα

kn




δd1

δd2

δα1

=


δ l1

δ l2

C

 (3.14)

In the elastic regime, A = 0, B = ktd1, and C = 0, whereas in the plastic regime, A =

ξ tanϕg sinα , B = 0 and C = sinα(
ξ tanϕgN1−T1

kn
).

As the local kinematic and static variables are solved, the stress averaging process will be

used to obtain the global stress. According to the Love formula (Equation 3.3), a loop stress

˜̄̄σ(θ) referring to local coordinate system (⃗n,⃗ t) can be given for each hexagon of volume

v(θ), as follows:

˜̄̄σ(θ) =

 v(θ)σ̃n(θ) 0

0 v(θ)σ̃t(θ)


v(θ)σ̃n(θ) = 4N1d1 cos2 α +4T1 sinα cosα +2N2d2

v(θ)σ̃n(θ) = 4N1d1 sin2
α −4T1 sinα cosα

(3.15)
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An integration of the loop stress along all the orientations renders the global stress,

¯̄σ =
1
V

∫
ω(θ) ¯̄P−1 ˜̄̄σ(θ) ¯̄Pdθ (3.16)

where ¯̄P is the transport matrix, being equal to

 cosθ sinθ

sinθ cosθ

, V is the volume of the

specimen.

Under this framework, one assumption propounded in micro-directional model and their

inducing consequences is invalided; contacts in the fabric will displace never independently,

but compatibly with other contacts in individual hexagons. This, however, does not indicate

a comprehensive compatibility among all contacts in the specimen, as it is only satisfied on

the scale of an individual hexagon.

3.2 A 3D extension of the H-model

The H-directional model is still limited within a 2D context. In order to extend the application

range of the H-directional model, especially to implement it in 3D FEM (Finite Element

Method) codes, several questions are encountered, such as, how to extend this striking 2D-H

model to 3D conditions. More generally, how to extend a 2D multi-scale constitutive model to

3D conditions in a feasible and straightforward way? In this section, an innovative approach

which is able to extend the 2D-H model to 3D conditions is presented.

3.2.1 Kinematic localization

In 3D conditions, a global coordinate system (⃗x1, x⃗2, x⃗3) is required, where x⃗1, x⃗2, x⃗3 axes

stand for the principal stress directions on the macro-scale. The 3D-H model similarly

follows the three steps shown in Figure 3.1, going from the incremental macroscopic strain
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tensor δ ¯̄ε to the incremental macroscopic stress tensor δ ¯̄σ by transforming the micro-scale

and meso-scale information. No rotation of the principal axis of both stress and strain tensors

is supposed to take place, so that δ ¯̄ε and δ ¯̄σ express as:

δ ¯̄ε =


δε11 0 0

0 δε22 0

0 0 δε33

 δ ¯̄σ =


δσ11 0 0

0 δσ22 0

0 0 δσ33

 (3.17)
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Figure 3.4 Global and local coordinate systems.

The granular assembly is described as a distribution of meso-structures oriented along

each direction of the physical space. As shown in Figure 3.4, each meso-structure with

respect to a given local frame
(⃗
n,⃗ t, w⃗

)
, can be described by Euler angles θ , ϕ and ψ . Thus, a

distribution function ω (θ ,ϕ,ψ) which indicates the density of meso-structures associated

with the frame
(⃗
n,⃗ t, w⃗

)
is introduced. This function expresses the directional distribution of

the meso-structures to describe texture arrangement of the granular assembly. In this thesis,

only the isotropic distribution is discussed.

The coordinate transformation from global frame to local frame can be implemented by

employing the rotation matrix ¯̄P, which is computed as the composition product of elementary

rotation matrices along axis x⃗1 , x⃗′2 and n⃗, respectively:



50 An extended micromechanically-based model for granular materials
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Figure 3.5 The meso-structure of 3D-H model.

¯̄P =


1 0 0

0 cosψ −sinψ

0 sinψ cosψ




cosϕ 0 −sinϕ

0 1 0

sinϕ 0 cosϕ




1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 (3.18)

which gives:

¯̄P =


cosϕ −sinθ sinϕ −cosθ sinϕ

−sinϕ sinψ cosθ cosψ − sinθ cosϕ sinψ −sinθ cosψ − cosθ cosϕ sinψ

sinϕ cosψ cosθ sinψ + sinθ cosϕ cosψ −sinθ sinψ + cosθ cosψ cosϕ


(3.19)

Besides, the meso-structure introduced in the following subsection (see Figure 3.5) is a

significant connection between macro-scale and meso-scale. The branch vector relies the

centers of particles in contact: L⃗ = [l1, l2, l3]T , wherein l1, l2, l3 represent the lengths along

directions n⃗, t⃗, w⃗, respectively. Thus, the kinematic localization gives:
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δ L⃗ = ¯̄Pδ ¯̄ε ¯̄P−1⃗L (3.20)

where: δ L⃗ =


δ l1

δ l2

δ l3


3.2.2 Meso-structure behavior

The meso-structure is composed of ten spherical grains with the identical radius rg (Fig-

ure 3.5). This meso-structure is selected because it includes a grain cluster, large enough to

contain four force chains (see Figure 3.6 and Figure 3.7), and enabling grain rearrangement.

It can be described analytically, and solved by hand, which is a great advantage. The grain

centers respectively belong to two mutually perpendicular planes. Meanwhile, the centers of

grains make up two mutually perpendicular hexagon patterns. Thus, the meso-structure can

be decomposed into two independent hexagon patterns: Hexagon A and Hexagon B (shown

in Figure 3.6 and Figure 3.7). To inherit the features from the H-directional model, this

meso-structure is able to lead complicated kinematic mechanisms, including local dilatant

and contractant behaviors. To simplify the derivation, it is assumed that each meso-structure

is subjected to an external symmetric load. Consequently, only two contacts between grains

1 to 2 and grains 2 to 3, respectively denoted by contact 1 and contact 2, are considered in

Hexagon A while two contacts between grains 1 to 7 and grains 7 to 8, denoted by contact

3 and contact 4 are considered in Hexagon B. T1 is tangential component and N1 is normal

component of the contact force of contact 1. The contact force applied by grain 3 to grain 2

only involves a normal component N2, the tangential component is nil due to the symmetry.

The relative incremental displacement between grains 1 and 2 is composed of a normal com-

ponent δu1
n and a tangential component δu1

t . Likewise, the relative incremental displacement

of contact 2 is composed of a single normal component. With respect to Figure 3.3, the
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tangential forces G2 and G3 are included, so that the moment balance of each grain can be

reached. Employing the notations given in Figure 3.6a, it follows that

δu1
n = δd1

δu1
t = d1δα1

δu2
n = δd2

(3.21)
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Figure 3.6 Mechanical description of hexagon pattern A.

The geometrical compatibility yields:

l1 = d2 +2d1 cosα1

l2 = 2d1 sinα1

(3.22)

Force balance of grain 1 along direction n⃗ and of grain 2 along direction w⃗ and n⃗ and

moment balance of grain 2 read:
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Figure 3.7 Mechanical description of hexagon pattern B.

Fa
1 =2(N1 cosα1 +T1 sinα1) (3.23a)

F2 =N1 sinα1 −T1 cosα1 (3.23b)

N2 =N1 cosα1 +T1 sinα1 +G2 (3.23c)

G2 =T2 (3.23d)

It should be noted that no rolling is assumed to affect particles (Equation 3.23d). This

assumption is undoubtedly questionable for spherical shaped grains, where particle rolling

acts as an important ingredient of the deformational processes (Kuhn and Bagi, 2004).

However, it seems to be reasonable for real granular soil materials where actual grains are

angular with multiple facets (Oda et al., 1982, 1997).

The inter-particle contact law expressed in Equations 3.2 is employed. After simplifying

(see detail in Appendix A.1), Equations 3.2 can be rewritten as follows:
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δNi =−knδdi

δTi = Biδα j −Aiδdi +Ci

i = 1,2,3,4 (3.24)

For the purpose of simplification, term Ci is negligible. It differs from zero only during

a transition from elastic regime to plastic regime. Except this situation, it is zero. For

very small strain increments, as considered throughout this paper, term Ci can therefore be

neglected.

To obtain the incremental evolution of the external forces, δd1, δd2 and δα1 have to be

expressed as a function of the meso strain. Three equations are therefore required. Compati-

bilities (Equations 3.22) provide two relations. The third one is the balance equation of grain

2 along direction n⃗ (Equation 3.23c). Taking the inter-particle contact law (Equations 3.24)

into account leads to the following algebraic system expressing the incremental changes in

δd1, δd2 and δα1 with respect to the incremental changes in δ l1 and δ l2:


2cosα1 1 −2d1 sinα1

2sinα1 0 2d1 cosα1

cosα1 +
A1
kn
(sinα1 +1) −1 F2−B1(sinα1+1)

kn




δd1

δd2

δα1

=


δ l1

δ l2

0

 (3.25)

where A1,B1 are given in Appendix A.1.

Differentiating Equation 3.23a, Equation 3.23b and combining with Equations 3.24 gives:

δFa
1 =−kn cosα1δu1

n + kt sinα1δu1
t −F2δα1

δF2 =−kt cosα1δu1
t − kn sinα1δu1

n +Fa
1 δα1

(3.26)

Thus, combining Equations 3.21, Equations 3.25 and Equation 3.26, the incremental

constitutive relation for Hexagon A can be expressed as follows:
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 Ka
11 Ka

12

Ka
21 Ka

22


 δ l1

δ l2

=

 δFa
1

δF2

 (3.27)

Similarly, the incremental constitutive relation for Hexagon B reads:

 Kb
11 Kb

12

Kb
21 Kb

22


 δ l1

δ l3

=

 δFb
1

δF3

 (3.28)

Finally, superimposing Hexagon A and Hexagon B, the total incremental force along

direction n⃗ is δF1 = δFa
1 + δFb

1 . The incremental constitutive relation of the 3D meso-

structure can be obtained as follows: (see detail in Appendix A.2)

¯̄Kδ l⃗ = δ F⃗ (3.29)

with ¯̄K =


Ka

11 +Kb
11 Ka

12 Kb
12

Ka
21 Ka

22 0

Kb
21 0 Kb

22


3.2.3 Stress averaging

Averaging the mesostress taking place within all the meso-structures in the specimen of

volume V can be performed as follows:

¯̄σ =
1
V

∫∫∫
ω(θ ,ϕ,ψ) ¯̄P−1 ¯̃̄

σ (⃗n,⃗ t, w⃗) ¯̄Psinϕdϕdθdψ (3.30)

where ¯̄σ is the macro-stress tensor operating on the specimen scale. For an isotropic

specimen, the distribution function ω(θ ,ϕ,ψ) is constant and θ ∈ [0,2π),ϕ ∈ [0,π],ψ ∈

[0,2π) (θ ,ϕ,ψ are the Euler angles depicted in Figure 3.4). The mesostress ¯̃̄
σ (⃗n,⃗ t, w⃗) with
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respect to the local frame can be computed using the Love-Weber’s formula (Christoffersen

et al., 1981; De Saxcé et al., 2004; Love, 1927; Mehrabadi et al., 1982):

σ̃11(⃗n,⃗ t, w⃗) = 4N1d1cos2α1 +4T1d1 cosα1 sinα1 +2N2d2

+4N3d3cos2α2 +4T3d3 cosα2 sinα2 +2N4d4

σ̃22(⃗n,⃗ t, w⃗) = 4N1d1sin2
α1 −4T1d1 cosα1 sinα1

σ̃33(⃗n,⃗ t, w⃗) = 4N3d3sin2
α2 −4T3d3 cosα2 sinα2

σ̃i j (⃗n,⃗ t, w⃗) = 0 when i ̸= j

(3.31)

It should be mentioned that a classical approximation is introduced when averaging the

stress: the applied point of each external force is shifted from the grain boundary to the

grain center, making it possible to introduce the branch vectors, and to retrieve the usual

Love-Weber formula; see for details (Nicot et al., 2013).

The principal components of meso-stress tensor are calculated by the internal forces and

the geometric terms of the meso-structure. Besides, off-diagonal components can be simply

considered as nil, because the meso-structure with respect to (⃗n,⃗ t, w⃗) always offsets the one

with respect to (−⃗n,−⃗t,−w⃗) in off-diagonal components when integrated. This point was

carefully checked from a numerical point of view.

3.2.4 Opening angle and void ratio

For a virgin specimen, the initial opening angle is denoted α0. Then, α1 = α2 = α0. The

initial void ratio e0(⃗n,⃗ t, w⃗) of each meso-structure belonging to local frame (⃗n,⃗ t, w⃗) can be

estimated by using the initial opening angle α0. The volume of the dodecahedron which is

made up of the branch vectors of meso-structure can be expressed as follows:

Vd = 32r3
gsin2

α0

(
1
3

cosα0 +
1
2

)
(3.32)
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where: rg is grain radius; α0 is the initial opening angle of the meso-structure considered.

The volume of the solid Vs in the dodecahedron includes ten parts. It is easy to calculate

the entire volume of the solid, because the volume of the five parts on top side equal the

volume of a whole grain. Thus, the entire volume of the solid parts can be calculated as

follows:

Vs =
8
3

πr3
g (3.33)

Combining Equation 3.32 and Equation 3.33, the initial void ratio expression is given by:

e0 =
Vd −Vs

Vs
= = -

4
π

cos3
α0 −

6
π

cos2
α0 +

4
π

cosα0 +
6
π
−1 (3.34)
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Figure 3.8 Evolution of initial void ratio as a function of initial opening angle.

The evolution of e0 with respect to angle α0 (Equation 3.34) is plotted in Figure 3.8, the

initial opening angle α0 is limited due to initial configuration of the meso-structure without

overlapping between grains. The minimum value α0 = 45◦ corresponds to the condition

that the grain 2 is just in contact with grains 7 and 10. The maximum value can reach 90◦
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when the grains 1 and 4 are touching. In order to estimate the initial opening angle from

the initial void ratio, Equation 3.34 is required to become a bijective function. Thus, the

domain of α0 is limited from 45◦ to 74.9◦ corresponding to the initial void ratio e0 from 0.4

to 1.09. Consequently, α0 can be estimated from e0, which is obtained from laboratory test.

With the help of this key micro parameter α0, the geometric fabric of the meso-structure is

determined. However, it should be noted that the maximum and minimum values of e0 are

not the maximum and minimum void ratios of the specimen considered.

3.3 Performances of the 3D-H model

In this section, the performance of the 3D-H model is examined. First, parameters are

calibrated by comparing the numerical response of the model with experimental data. Sec-

ond, one of the most appropriate set of parameters is adopted to carry out prediction tests

at different confining pressures. Then, some numerical simulations are conducted along

different loading paths to validate the model. As discussed in previous section, the proposed

model introduces four parameters: kn, kt , ϕg (material parameters), and e0, wherein the initial

void ratio e0 corresponding to opening angle α0 can be estimated from Equation 3.34.

3.3.1 Parameter calibration and model prediction

The calibration of the present model can be performed from the comparison between nu-

merical and experimental results. The experiment was carried out along the conventional

drained triaxial loading path with mono-disperse sand (d50 = 0.6mm) called Ticino sand,

well characterized from a geotechnical point of view and adopted in many studies (Valentino

et al., 2008).
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Conventional triaxial compression test (CTC) at 200 kPa of confining pressure is adopted

to calibrate the model parameters by considering two responses: (1) the stress-strain response;

(2) the volumetric response. Figure 3.9 shows the numerical result in comparison with the

experimental result, where the experimental curves are well reproduced using the set of

parameters reported in Table 3.1.

Table 3.1 Parameters selected in calibration and prediction phases

kn/rg(Pa) kt/kn e0 ϕg(◦) Initial isotropic stress p0(kPa)

1.90×109 0.6 0.53 25 100, 200, 300 and 400
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Figure 3.9 Calibration phase of the model at 200 kPa of confining pressure.

Figure 3.10 shows the model predictions of deviatoric stress and volumetric strain plotted

against axial strain at different confining pressures. The calibrated parameters reported

in Table 3.1 are employed. Evidently, the model predictions agree fairly well with the

experimental curves in terms of both the stress-strain relation and volumetric responses. As

shown in Figure 3.10a, the numerical curve rises lower than the experimental curve at 300

kPa of confining pressure while higher at 100 kPa. Figure 3.10b plots the volumetric strain εv

versus axial strain εa. The experimental curves are reproduced well, illustrating the capability

of this model.
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In general, the calibration and prediction evidence satisfying results. The present model

captures well the experimental curves with only four parameters. The microscopic geomet-

rical parameter α (see Figure 3.6a and Figure 3.7a) evolves independently during loading

paths, which will be further discussed subsequently.
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Figure 3.10 Prediction capability of the model at 100 kPa and 300 kPa of confining pressures.

3.3.2 Triaxial loading paths

CTC tests at different confining pressures are selected to show how the proposed model

simulates the behavior observed for sands. For demonstration purpose, the simulations at 100

kPa, 200 kPa and 400 kPa confining pressures are compared in Figure 3.11 from εa = 0% to

εa = 25%. The parameters reported in Table 3.1 are adopted.

Figure 3.11a shows that the deviatoric stress q reaches a peak at a small strain about

εa = 5% and undergoes a subsequent softening regime until critical state regime develop. As

shown in Figure 3.11b, the deviatoric stress q triple increases as the mean stress p during

the triaxial loading path. The volumetric strain responses at different confining pressures

are displayed in Figure 3.11c, where a dilatancy can be observed before the critical state,

except a sensible contractancy captured at the beginning. Figure 3.11d plots the void ratio e
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versus the mean stress p in logarithms form. The curves are increasing until the critical state

line. The evolution of the void ratio can be observed in Figure 3.11e where the volumetric

strain εv firstly decreases and then increases until a plateau is reached. Figure 3.11f gives the

deviatoric ratios q/p plotted against the axial strain εa. The peak of deviatoric stress ratio

increases as the initial confining pressure decreases. All the curves converge toward more

or less the same value, close to 1.25. In 3D conditions, the deviatoric ratio is related to the

mobilized macroscopic friction angle, as:

q
p
=

6sinϕc

3− sinϕc
(3.35)

which gives ϕc ∼ 31.15◦ when q/p = 1.25

Besides, additional three CTC tests are carried out at a same initial confining pressure,

namely 200 kPa, with different initial void ratios e0 = 0.43, e0 = 0.53, e0 = 0.63. As shown

in Figure 3.12a, the deviatoric stress q reaches different peaks due to the effect of different

initial void ratios. The peak of the curve corresponding to e0 = 0.53 (the densest specimen)

rises higher than the curve corresponding to e0 = 0.63 (the loosest specimen). In Figure 3.12b,

the void ratio slightly decreases at the beginning and then increases until the critical void

ratio at the end, where a convergence tendency can be observed. Conversely, the loosest

specimen reaches a higher critical void ratio than the densest one. As shown in Figure 3.12c,

the volumetric strain curve decreases before εa = 2% and increases until critical state. The

densest specimen response is more dilatant than that of the loosest one. Figure 3.11d plots

the axial strains versus the deviatoric ratios, which shows that the largest initial void ratio

brings out the lowest peak in deviatoric ratio q/p, corresponding to the highest macroscopic

friction angle ϕc. It is very challenging for a stress-strain model to reproduce the critical

state, when no specific assumptions are introduced. However, by the proposed model it is
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Figure 3.11 Effect of different initial confining pressures on model responses along an
axisymmetric drained triaxial loading path.
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observed that the critical state is not perfectly obtained, but is reached approximately, giving

rise to a critical state regime tendency.
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Figure 3.12 Effect of different initial void ratios on the model response along an axisymmetric
drained triaxial loading path.

It is noticed that the hardening and softening behavior, including the qualitatively de-

scribed critical state, can be illustrated from a micro-mechanical point of view. The 3D

distributions over angle θ of micro variables including micro stresses (σ̃ ), contact informa-

tion and opening angles (α1(2)) involve three Euler angles (θ ,ϕ and ψ see Figure 3.4). For

the purpose of simplification, these 3D micro variables can be integrated either over ϕ,ψ or

over θ ,ψ . Considering the drained triaxial loading path, the former is selected. The angular



64 An extended micromechanically-based model for granular materials

distributions of micro variables at different strain states, with 200 kPa confining stress, are

illustrated in Figure 3.13. In each sub-figure, three polar figures are shown: the integrated

micro stress
∫∫

ωσ̃ndθdψ ,
∫∫

ωσ̃tdθdψ and
∫∫

ωσ̃wdθdψ (left column); the percentage

of plastic or failure meso-structures (center column); the mean normalized opening angle

(α1/α0,α2/α0) (right column). It should be mentioned that the failure area in the center

column denotes the percentage of meso-structures at a certain value of θ . There are two

possibilities that may lead to the failure meso-structure: the one is due to the vanishing of N2

or N4 that resulting in a opening contact; another one is grain 1 and grain 4 are contacted each

other. As a meso-structure is failure, σ̃ and α1(2) are set to zero. The contact creation and dis-

appearance are significant features of the present model, which makes it possible to simulate

different micro-mechanisms of grain rearrangement along different loading conditions.

Initially, all of the meso-structures are created following an isotropic distribution with

same initial opening angle α0 = 41.56◦. Figure 3.13(a) corresponds to the end of the

isotropic compression phase, where the micro stress and opening angle are isotropically

distributed. Each meso-structure evolves independently, giving rise to different local relative

displacements in terms of the kinematic localization (Equation 3.20). During the isotropic

compression phase, neither failure nor plastic meso-structure can be observed, which indicates

that the specimen still behaves in an elastic regime. As shown in Figure 3.13(b),
∫∫

ωσ̃ndθdψ

plays a major role along the axial compression direction (ϕ = 0 or 180◦), which shows an

anisotropic micro stress state. The meso-structures oriented within a central cone (angle β ,

the circumferential angle of the failure cone) become failure, because the meso-structures

in this cone dilate too much in order to keep the constant confining stress. Meanwhile,

more than 20% of meso-structures reach a plastic regime in the rest of area. Afterwards,

Figure 3.13 (c,d,e and f) shows the evolution of micro variables during the triaxial loading

path. In the left column, micro-stress increases in the non-failure area as β also increases

in the center column. Thus, the macro stress-strain response can be better illustrated from
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Figure 3.13 Angular distributions of micro variables along θ at different strain states, with
200 kPa of the confining stress: the integrated micro stress

∫∫
ωσ̃ndθdψ ,

∫∫
ωσ̃tdθdψ and∫∫

ωσ̃wdθdψ (N) (left column); the percentage of plastic or failure meso-structures (center
column); the mean normalized of the opening angles (α1/α0,α2/α0) (right column).
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Figure 3.14 Mechanical response over a proportional loading path with different R values
(δε2 = δε3 =− 1

2Rδε1).

these micro state variables. If the micro-stress increases significantly, the macro-stress raises.

Otherwise, if the failure regime becomes dominant, the macro-stress decreases. Moreover, the

increasing and decreasing tendencies of the macro-stress can reach a balance corresponding

to the macro-stress plateau. Both failure and plastic regimes of the present model cannot be

reversed, which directs the softening behavior observed on the macro scale. Additionally,

slightly growing of opening angles α2 and α3 can be observed in the right column. It is a

key geometrical parameter, which has a tremendous influence on the micro forces within the

meso-structure. This geometrical parameter also reveals the rearrangement of the specimen.

The relative position between particles is directed not only from the single contact relation,

but is also governed by the geometrical configuration described by this key parameter.
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3.3.3 Proportional loading path

For the sake of illustration, a proportional loading path is then considered. After the isotropic

confining stage, the specimen is subsequently subjected to a proportional strain loading path

defined by (Darve et al., 2004):

δε1 = positive constant

δε2 = δε3 (axisymmetric condition)

δε1 +2Rδε3 = 0 (R constant for a given path)

(3.36)

This set of loading paths is a pure strain-controlled loading, with value R is varied

in different tests, the model performance can be checked along different loading paths.

Note that when value R = 1, the volumetric change of the specimen is imposed to be zero,

corresponding to the well-known undrained (isochoric) triaxial test. The test can either

follow the dilatant loading path with 0< R< 1 or the contractant loading path with R> 1,

giving advantages to the test that makes it possible to explore the model response along any

direction in the incremental strain space.

In this simulation, four different R values are considered, as shown in Figure 3.14. The

mechanical response is presented by analyzing the relation between the deiviatoric stress

variable q = σ1−σ2 and the mean stress p = (σ1+σ2+σ3)/3 by employing the parameters

reported in Table 3.1. As observed in Figure 3.14, most of the tests can approach the Mohr-

Coulomb line (the dashed line in Figure 3.14) and continuously increase the stress until to the

critical state. However, when value R decreases until a critical value R̄ = 0.2, the liquefaction

can be observed with stresses eventually vanish. This is a generalization of what is observed

along isochoric biaxial or triaxial paths, where a liquefaction mechanism occurs for loose

specimens. Thus, investigating proportional strain paths makes it possible to check whether a

certain failure mode may occur even for dense specimens. The ability of the microdirectional
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model and the H-model to characterize the liquefaction has been proved (Nicot and Darve,

2011b; Nicot et al., 2005). As expected, this ability has been inherited by the 3D-H model.

3.4 Closing remarks

There are two aspects to be considered in the constitutive modeling of the granular materials

using a multi-scale approach. First, the macroscopic constitutive relation should be properly

related to the microscopic features, that is to say, the local behaviors on the contact scale,

from which the macroscopic behavior stems. The more properly this point is achieved, the

more realistic the constitutive model’s performance will be. Another concern is to decrease

the computational complexity as much as possible with reasonable assumptions, in order to

avoid handling an exceeding number of local balance equations, for all the particles. To most

cases, involving more mechanical details in the micro-scale and decreasing the computational

complexity are paradoxical. In past decades, many researchers explored different routes

between these two aspects, trying to find an optimized solution in favor of both. However, an

optimized solution can be obtained only if the microscopic behavior of the granular material

can be deeper understood. This chapter gives an example of the attempt to find this optimized

solution.

In this chapter, the micro-directional model and the H-model are first reviewed. The

former states that the microscopic fabric of the material consists of individual contacts

independent from each other and oriented along different directions. As the incremental

strain is affinely projected onto all individual contacts, incremental forces are simultaneously

generated according to the local constitutive relation, namely, the contact law. Then the

global stress can be obtained by integrating all contacts forces in the way given by the Love

formula. This model succeeds to relate the macro-scale properties to micro-scale ones by

employing an assumed fabric. However, strong shortcomings have been noted. To overcome
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such limitations, the H-model is introduced, which replaces individual contacts by individual

hexagonal patterns. The local behavior from the contact law is replaced with the local

constitutive relation of the hexagon, in which contacts are never independent but internally

compatible with each other.

based on the homogenization scheme used in the micro-directional model and the H-

model, the latter is extended to 3D conditions by replacing the 2D hexagonal pattern with

a 3D meso-structure. For this purpose, a decomposition and superimposition approach

is introduced to analyze the local behavior of the meso-structure. The 3D-H model only

introduces four parameters, wherein kn, kt and ϕg relate to the elastic-perfect plastic inter-

particle contact law. The last one (the opening angle α0) is a key microscopic geometrical

parameter which can be estimated from the initial void ratio. It is noteworthy that the granular

assembly rearrangement can be reflected by the evolution of the opening angle α0.

By comparing with experimental results on Ticino sands, the calibration of the model is

carried out and the predictive capabilities are examined along drained triaxial compression

loading paths. The results obtained are both qualitatively and quantitatively satisfying. The

hardening and softening regimes are reproduced well in the stress-strain response. Meanwhile,

the dilatant and contractant regimes are also well captured by the volumetric strain curve. By

adopting the calibrated parameters, two sets of numerical tests are run, including different

confining stresses and initial void ratios. One of the most significant findings emerging from

this study is that the critical state can be approximately described from void ratio evolution

without involving any CSL formulations and associated parameters. The model mechanism is

also analyzed from a microscopic point of view. The angular distributions of micro variables

are plotted at different strain states under the drained triaxial loading path, giving important

information about the microstructure evolution.



Chapter 4

Finite element implementation of the

3D-H model

A 3D multi-scale approach is presented to investigate the mechanical behavior of a macro-

scopic specimen consisting of a granular assembly, as a boundary value problem. The core

of this approach is a multiscale coupling, wherein the finite element method is used to solve

a boundary value problem and a micromechanically-based model is employed as constitu-

tive relationship used at a representative volume element scale. This approach provides a

convenient way to link the macroscopic observations with intrinsic microscopic mechanisms.

The plane-strain triaxial loading condition is selected to simulate the occurrence of strain

localization. A series of tests are performed, wherein distinct failure patterns are observed

and analyzed. A system of shear band naturally appears in a homogeneous setting specimen.

By defining the shear band area, microstructural mechanisms are separately investigated

inside and outside the shear band. Moreover, a second-order work directional analysis is

performed by applying strain probes at different stress-strain states along drained triaxial

loading paths. The normalized second order work introduced as an indicator of instability

occurrence is analyzed not only on the macroscale but also on the microscale.
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4.1 The Finite Element Method

The finite element method (FEM) is perchance the most effective and famous numerical

method ever devised for approximately solving boundary value problems (BVP), i.e. sets of

differential equations applied to a domain with prescribed boundary conditions. Examples of

BVPs abound in real life. In the field of geotechnical engineering, BVPs not only exist at

the laboratory scale but also exist in geotechnical engineering problems, for instance, the

footing case as a foundation supporting loads from a structure, water/fluid flowing through

an embankment dam, a tunnel being excavated and a footing located near a slope.

In a broad sense, the FEM basically consists of:

• transforming the set of governing equations to a weak form;

• dividing/discretizing the domain of the problem into smaller geometrically simpler

subdomains, .i.e. finite elements; and

• using proper approximating solutions.

The constitutive relation plays a significant role in the FE stress-strain analysis because

it establishes the connection between stresses (forces) and strains (displacements) for the

material (structure). Using a constitutive model making it possible to describe the material

behavior can produce misleading FE results that, as a result, if applied to engineering

design, may lead to grievous consequences. The analysis of structures contacting with

geomaterials requires caution, for the reason that the mechanical behavior of these materials

is very complex. It is essential to use proper and effective constitutive models such as the

micromechanically-based models.

Aside from picking up a reliable constitutive model, it is also relevant that the FEM

code is robust and able to deal properly with issues that arise within numerical methods
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themselves, for instance, hourglassing, patch test. As already alluded in the introduction of

this research work, computations are here carried out using the commercial software Abaqus

v6.11 (http://www.simulia.com). Abaqus is a commercial package of FEM-based programs

designed to simulate a wide variety of engineering problems ranging from relatively simple

linear analyses to more complex nonlinear ones. This software allows users to define their

own constitutive model through a facility subroutine called VUMAT. Moreover, extensively

detailed manuals with theory and example accompany the package. Also, a great number of

users and forums can be found on the internet. A few more details about Abaqus and the

user material subroutine VUMAT can be encountered in Appendix B of this dissertation.

The FEM code (ABAQUS/Explicit) (Hibbitt and Sorensen, 2001) is used to solve BVPs

in the context of this multi-scale approach. An arbitrary geometric domain Ω of a given BVP

is firstly discretized into apposite FEM meshes with geometric position x⃗. The discretized

equilibrium equation for the whole mesh reads:

F⃗e − F⃗ i = ¯̄M⃗̈u (4.1)

where F⃗e is the external force vector; F⃗ i is the internal force vector; ¯̄M is the mass matrix

and u⃗ is the displacement of each material point x⃗.

The internal force vector is given by:

F⃗ i = ¯̄Ku⃗ (4.2)

where ¯̄K is the stiffness matrix, calculated from the 3D-H model (constitutive relation) and

the interpolation assumption (geometric relation) in the element.

Thus, for a dynamic equilibrium state at the current time (t):

¯̄M⃗̈u|t = (F⃗e − F⃗ i)|t (4.3)

http://www.simulia.com
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The central difference integration scheme is used to update velocities and displacements:


⃗̇u|(t+∆t

2 ) = ⃗̇u|(t−∆t
2 )+

(
∆t|(t+∆t)+∆t|t

2

)
⃗̈u|t

u⃗|(t+∆t
2 ) = u⃗|t +∆t|(t+∆t )⃗u̇|(t+∆t

2 )

(4.4)

The geometry is updated by adding the displacement increments to the initial geometrical

configuration x⃗0:

x⃗t+∆t = x⃗0 + u⃗t+∆t (4.5)

As the mass matrix ¯̄M in Equation 4.3 is diagonalized (or lumped), its inversion is

trivial, and the system of differential equations decouples. Its overall solution can then be

performed independently and very fast for each degree of freedom. Further reductions of the

computation time per time increment stem from a utilization of reduced integration schemes

that are often applied even to the deviatoric parts of the stiffness matrix, and finally numerical

actions related to mass scaling and load factoring also contribute to the reductions of the

computation.

Additional computational advantages result from the fact that dynamic explicit schemes,

unlike quasi-static implicit schemes, do not check equilibrium requirements at the end of

each increment of time. The analogy between the dynamic equilibrium Equation 4.1 and the

ideal mass-spring vibrating system allows concluding that explicit central difference time

integration schemes (frequently referred to as explicit integration schemes) are conditionally

stable according to the magnitude of the time increment ∆t:

∆t ≤ Le

E/ρ
=

Le

ce
(4.6)
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where Le is the typical size of the finite elements discretizing the domain, E is the elasticity

modulus and ce is the propagation velocity of a longitudinal wave in the material. In case

of metal forming applications, the stability condition Equation 4.6 requires the utilization

of very small increments of time ∆t, say microseconds, and millions of increments to finish

a simulation because industrial metal forming processes usually take several seconds to be

accomplished. This is the reason why computer programs often make use of the following

numerical actions in order to increase the increment of time ∆t and, consequently, reducing

the overall computation time:

• Diagonalization of the mass matrix;

• Mass scaling—by increasing the density of the material and thus artificially reducing

the speed ce of the longitudinal wave;

• Load factoring—by changing the rate of loading through an artificial increase in the

velocity of the tooling as compared to the real forming velocity;

• Reduced integration of the deviatoric part of the stiffness matrix, which is usually fully

integrated.

When presenting the numerical results throughout this thesis, the convention in soil

mechanics which treats compression as positive is followed. Two commonly referred stress

measurements—— the mean stress p and the deviatoric stress q can be calculated based on

the Cauchy stress tensor ¯̄σ as:

p = 1
d tr ¯̄σ

q =
√

d−1
d

¯̄σdev : ¯̄σdev

(4.7)

where d is the dimension of the problem (d = 2 or d = 3), ¯̄σdev is the deviatoric stress tensor,

¯̄σdev = ¯̄σ − p ¯̄
δ , with ¯̄

δ being the Kronecker symbol.
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The volumetric strain εv and the deviatoric strain εq can be derived as:

εv = tr ¯̄ε

εq =
√

d
d−1

¯̄εdev : ¯̄εdev

(4.8)

where ¯̄εdev is the deviatoric strain tensor, ¯̄εdev = ¯̄ε − 1
d εv

¯̄
δ .

4.2 Multi-scale approach implementation

The FEM implementation of the 3D-H model constitutes a complete multi-scale procedure.

In FEM, the cell is usually called ’microscale’ due to the fact that it is one of the fundamental

elements of a BVP. However, this cell can also be called ’macroscale’, because it is the

REV in DEM. To clarify, different scales involved in this multi-scale approach are depicted

in Figure 4.2. Gauss integration points in the FEM mesh correspond to the REV scale at

which the 3D-H model operates. Two intermediate scales (hexagon scale and REV scale)

are introduced to bridge macro and micro scales. The element type named C3D8R (three-

dimensional eight-node brick element with reduced integration) is selected. The schematic

diagram of the framework is depicted in Figure 4.1 and can be illustrated by the following

steps:

(1) From macro-scale to the REV scale, the BVP is solved by using ABAQUS dynamic-

explicit solver. The macro-strain of each element is computed, and then transferred to

the REV scale.

(2) From the REV scale to the meso-scale, the 3D-H model is employed. The macro-strain

is distributed to local meso-structures by using kinematic localization (Equation 3.20).

Thus, the strain of the meso-structure is obtained.
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(3) From the meso-scale to the REV scale, the constitutive relation of the meso-structure

is firstly obtained, then the internal forces within the meso-structure are calculated. By

using Love’s formula, the stress within the REV is calculated.

(4) From the REV scale to the macro-scale, the macro-stress is computed after all the

stresses acting at integration points are calculated.
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Figure 4.1 The schematic diagram of multi-scale approach based on the 3D H-model.

4.3 Finite Element Model and benchmark

4.3.1 Finite Element Model

In order to examine the performance of the multiscale approach elaborated in previous chapter,

the numerical analysis presented in this chapter mainly focuses on triaxial compression

loading under the plane-strain condition. As shown in Figure 4.3, the specimen with size:

0.2(x⃗1)×0.1(x⃗2)×0.005 (x⃗3) m3 is assembled between two rigid bars. The degree of freedom

along x⃗3 of the whole model is blocked while the confining stress is applied along x⃗2.
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Figure 4.2 Different scales involved in the multi-scale approach.

4.3.2 Calibration and verification

In relation with the elastic-perfect plastic inter-particle contact law, it is worth noting that

this multiscale approach involves only three material parameters and one micro geometrical

parameter. The formers including the normal stiffness (kn), tangential stiffness (kt), inter-

particle friction angle (ϕg) stem from the contact law, while the latter is the opening angle

(α0) calculated from the initial void ratio. Thus, four parameters need to be calibrated. It is

worth noting that, the 3D-H model was calibrated in chapter 3 with a homogeneous specimen

under homogeneous conditions. In contrast with chapter 3, the calibration procedure in this

chapter is based on solving the boundary value problem with a meshed volume by using

FEM model. The parameters are determined by trial and error in order to provide the best fit

to a single isotropically compressed drained triaxial test confined at 200 kPa on Ticino sand

with DR = 74% of relative density. The best fit of DR = 74% is shown in Figure 4.4 while

the employed parameters are reported in Table 4.1. Afterwards, these parameters are used
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Step: Step−1
Increment        17: Step Time =   2.6162E−02

(a) Model perspective view

Constraints:
u3 = 0 (whole model)
u1 = 0 (bottom)

Element: C3D8R
3D element
8 nodes
1 Gauss point

~x1

~x2

~x3

(b) Constraints and element
type.

Figure 4.3 Model constraints and element type.
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Figure 4.4 Parameters calibration and model verification using the triaxial compression test
on Ticino sand (DR = 74%).
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to examine the model predictive capability by comparing the experimental data from the

drained triaxial test confined at 100 kPa and 300 kPa. The results are observed in Figure 4.4,

where the predicted curves are in agreement with the experimental curves.

Table 4.1 Parameters selected in calibration and prediction phases

kn/rg(Pa) kt/kn e0 ϕg(◦)

1.90×109 0.6 0.53 25

4.3.3 Mesh dependency

In order to assess the sensitivity of finite element mesh for the localization analysis, five

cubic mesh patterns with different elements are considered. Figure 4.5 shows the mechanical

responses for all the mesh patterns along drained triaxial loading paths at 200 kPa of confining

stress. It is remarkable that whatever the mesh is, the hardening phase is the same (εa < 3.6%).

Afterwards, the curves reach the stress peak, and a softening behavior can be observed, where

the more elements are used, the deeper the deviatoric stress drops. The softening phase reveals

a mesh dependency stemming from the strain localization. As shown in Figure 4.6, no visible

strain localization can be observed with 50 elements and 200 elements, whereas it evidently

exists with 406 elements, 595 elements, 800 elements and 1653 elements. Due to the strain

localization, a given increment of top loading displacement is no longer accommodated by all

the elements in the whole specimen, but localized through a much marked shear deformation

in the band. However, the different curves tend toward a unique one when the number of

elements is increased. Besides, taking into account the computational efficiency, the mesh

with 800 elements is used hereafter.
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Figure 4.5 Mechanical response with different mesh patterns under the drained triaxial
loading path at 200 kPa of confining stress.

4.4 Drained triaxial tests

The plane-strain model with 800 elements is used to investigate the strain localization problem.

As discussed in the previous section, the calibrated parameters listed in Table 4.1 are adopted.

A series of tests described in Table 4.2 and Table 4.3 are performed to analyze the model

performance under drained triaxial loading paths. The effects of boundary conditions (T1-T4)

and imperfection positions (T5-T8) are firstly investigated. Then, test T1 is considered as a

representative test to discuss the influence of initial void ratio and confining stress.

4.4.1 Model performance

Figure 4.7 compares the numerical results in terms of deformed configuration and strain

field εq for different boundary conditions (T1-T4). By the same token, strain localization

with inclined shear band(s) appear(s) in all tests (T1-T4) even though symmetrical boundary

conditions (T2 and T3) are adopted. For non-symmetric boundary conditions, the strain
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(a) 50 elements (b) 200 elements (c) 406 elements

(d) 595 elements (e) 800 elements (f) 1653 elements

Figure 4.6 Contours plotting of deviatoric strain εq for the deformed configuration at the state
of axial strain εa = 6%.
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Test Imperfection position Boundary condition

T1 None 1©
T2 None 2©
T3 None 3©
T4 None 4©
T5 1© 2©
T6 2© 2©
T7 3© 2©
T8 4© 2©

Table 4.2 Imperfection positions and boundary conditions of different tests, further explana-
tions are supplied in Table 4.3.

localization normally initiates from the non-symmetric boundary point, gradually penetrates

the whole specimen to form shear band(s). However, if the boundary conditions do not

break the symmetry, the elements on the corner firstly reach stress peak and then shear bands

develop.

An initial imperfection is introduced in the specimen via some material perturbation in

terms of increasing initial void ratio from e = 0.53 to e = 0.54. The imperfection positions

are depicted in Table 4.3. Figure 4.8 compares the failure patterns on deformed configurations

in terms εq for distinct imperfection positions. Particularly, even though the material and

boundary conditions are homogeneous, the strain localization can be still observed. The

deformed configurations referring to distinct imperfection positions are totally different.

Generally speaking, shear bands are usually centered on the material point with imperfection.

The shape of strain localization depends on the imperfection position: X-shape shear band

(T5), half X-shape shear band (T6) or quarter X-shape shear band (T7, T8).

Initiation and development of strain localization are governed by different mechanisms:

they do not depend only on boundary conditions and material imperfections, but are also

affected by the initial void ratio and confining stress (Desrues and Viggiani, 2004). In this

section, the effects of initial void ratio and confining stress are numerically analyzed under
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(a) T1 (b) T2

(c) T3 (d) T4

Figure 4.7 Failure patterns on deformed configuration in terms of εq for distinct boundary
conditions (T1-T4).
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(a) T5 (b) T6

(c) T7 (d) T8

Figure 4.8 Failure patterns on deformed configuration in terms of εq for distinct imperfection
positions (T5-T8).
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1© 2© 3© 4©

Boundary
condition

Imperfection
position

Table 4.3 Schematic diagram of imperfection positions and boundary conditions given in
Table 4.2.

plane strain conditions. Figure 4.9 and Figure 4.10 show the mechanical response of the

specimen, together with failure patterns at different confining stress for test T1. It is worth

noting that the initiation of strain localization corresponds to the stress peak of the mechanical

response. The plots clearly demonstrate the influence of confining stress on the mechanical

response. The stress peak is reached faster, which means that the strain localization initiates

earlier, when the specimen is subjected to lower confining stress compared to those confined

at higher stress. It is consistent with the experimental results observed by (Alshibli et al.,

2003; Han and Drescher, 1993).

The dense homogeneous specimens for test T1 with initial void ratio spanning from 0.53

to 0.63 are subjected to the triaxial loading path, confined at 200 kPa. Figure 4.11 shows

the evolution of deviatoric stress versus overall axial strain. It is observed that the looser

the specimen is, the earlier the strain localization initiates, because the stress peak of the

looser specimen is reached at a lower axial strain and then the looser specimen becomes

heterogeneous.
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It is worth noting that the shear band inclination, θ , is in good agreement with the

values given by Roscoe’s approximation: θ = π/4+(ϕm +ψm)/4, where ϕm is mobilized

friction angle and ψm is dilatancy angle. For the 3D-H model, the micro friction angle

ϕm = ϕg = 25.00◦ and the dilatancy angle ψm = 1.00◦ is measured in Figure 4.11b. Thus,

θ = 45.00◦+(25.00◦+1.00◦)/4 = 51.50◦ which is exactly measured in Figure 4.12a.
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Figure 4.9 Mechanical response with different confining stresses for test T1.

4.4.2 Phases transition: from homogeneity to inhomogeneity

The nature of the mechanical response of a perfectly homogeneous specimen is investigated

in this section. The parameters and initial conditions are identical for all elements in the mesh.

Figure 4.13a and Figure 4.13b show the mechanical responses and volumetric responses for

all the elements in the finite element mesh, respectively. The first remark is that from the

beginning to the line 1⃝, whatever the mechanical response (stress or volumetric response),

the specimen behaves perfectly homogeneously corresponding to the purely elastic regime of
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(a) σc = 100kPa (b) σc = 200kPa (c) σc = 300kPa

Figure 4.10 Failure patterns on deformed configuration in terms of εq for different confining
stresses in test T1.

the model. The curves approximately coincide from lines 1⃝ to 2⃝ with slight differences

due to possible dynamical effects. All curves bifurcate at a bifurcation point (line 2⃝), which

occurs at around 4% of axial strain indicating the loss of uniqueness of solutions of BVPs

as a homogeneous problem. This loss of uniqueness corresponds to the violation of Rice’s

criterion (Darve et al., 2004; Prunier et al., 2009a; Rudnicki and Rice, 1975; Wan et al.,

2013).

Figure 4.14 shows the maps of normalized second-order work W2n for the deformed

configuration at three different states corresponding to lines 2⃝, 3⃝ and 4⃝ in Figure 4.13.

The second-order work for each element can be normalized as follows:

W2n =
δ ¯̄σ : δ ¯̄ε

∥ δ ¯̄σ ∥∥ δ ¯̄ε ∥ (4.9)

As shown at state 2⃝ in Figure 4.14, the negative values of W2n distribute in the whole

specimen, indicating the unstable state of most of the elements, which corresponds to the

bifurcation point reported in Figure 4.13. After that, at states 3⃝ and 4⃝, the negative values

of W2n concentrate in a narrow zone: a shear band naturally and gradually appears. The
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Figure 4.11 Mechanical and volumetric responses with different initial void ratios for test T1.
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θ = 51.50◦

(a) e = 0.53 (b) e = 0.58 (c) e = 0.63

Figure 4.12 Failure patterns on deformed configuration in terms of εq for different initial
void ratios in test T1.

material points located inside the shear band remain unstable as negative second-order work

values subsist, whereas other points outside the shear band undergo unloading with positive

values of second-order work. It is noted that the bottom area of the specimen also reveals

negative values at state 2⃝ due to the fact that the non-symmetry of the boundary conditions

leads to horizontal displacements. However, it gradually disappears when the shear band

becomes evident at state 3⃝.

Figure 4.15 correspondingly shows the maps of kinetic energy Ek (J) for the deformed

configuration at states 2⃝, 3⃝ and 4⃝. At the bifurcation point 2⃝, elements on the left and

bottom boundary firstly experience an increase in kinetic energy due to the deformation of the

elements at the bottom left corner. After the shear band appears, the specimen is divided into

two parts. The top part evolves in a dynamic regime directed by the external displacement

loading applied at the top of the specimen, whereas the bottom part only experiences a

material dilatancy. It is consistent with previous work of (Desrues and Viggiani, 2004;

Rechenmacher, 2006)
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Figure 4.13 Mechanical and volumetric responses for all elements in the mesh.
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2⃝ 3⃝ 4⃝

Figure 4.14 The maps of normalized second-order work W2n for the deformed configuration
at different states (see Figure 4.13).

2⃝ 3⃝ 4⃝

Figure 4.15 The maps of kinetic energy Ek (J) for the deformed configuration at different
states corresponding to Figure 4.13.
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4.4.3 Inside and outside shear band

As illustrated in the previous section, the specimen loses homogeneity when the shear band

appears. Thus, the specimen can be considered as constituted with two parts: inside shear

band area and outside shear band area. The material behavior should be analyzed separately

in these two regions.

A shear band or, more generally, a strain localization refers to a special zone where the

strain largely concentrates, usually of plastic nature, and develops during large deformation

of the material. However, there is no quantitative definition of shear band area in the literature.

In this section, the element deviatoric strain (εq) is used to define the shear band area. In

T1 test, for example, the state of εa = 6% is selected, located along the descending branch

of deviatoric stress curve (Figure 4.13a). The map of εq for the deformed configuration of

the specimen is shown in Figure 4.16a. As observed in this figure, εq experience a localized

pattern along a diagonal area crossing the whole specimen to form a shear band, which is a

typical localization pattern appearing after stress peak. Thus, the shear band area is defined

as in Figure 4.16c, which shows the ascending order evolution of εq versus element number.

As shown in the figure, most of material points locate below with small εq, whereas the

remaining material points have large εq. In this case, a critical value εc
q is introduced to

determine whether an element is located inside or outside the shear band. Thus, the definition

is considered as follows:  εq < εc
q ⇒ outside

εq > εc
q ⇒ inside

(4.10)

As shown in Figure 4.16c, point A is a transition from linear to nonlinear pattern whereas a

linear regime seems to be obtained immediately after point B. Point B is selected, because

point B leads a more obvious shear band than Point A. Thus, by adopting εc
q = 0.111 to test

T1, the shear band appears clearly in Figure 4.16b.
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(a) The map of εq for the deformed configura-
tion of T1 at the strain εa = 6%.

inside shear band
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(b) Shear band definition by adopting εc
q =

0.111.
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Figure 4.16 Shear band definition.



96 Finite element implementation of the 3D-H model

Figure 4.17a shows the evolution of volumetric strain with respect to the overall axial

strain for specimen T1: inside shear band area, outside shear band area and total area. The

three curves are coinciding before εa = 4% due to the fact that the specimen is homogeneous.

However, the inside shear band curve and outside shear band curve diverge toward two

different states after εa = 4%. The outside shear band curve becomes more contractant

whereas the inside shear band curve shows dilatancy. Moreover, the global curve does not

allow to figure out the strong dilatancy taking place within the shear band. Figure 4.17b

correspondingly shows the evolution of second-order work against the overall axial strain for

specimen T1. The inside shear band second-order work (W in
2 ) and the outside shear band

second-order work (W out
2 ) are computed as follows:

W in
2 = ∑

i∈inside

(
δ ¯̄σ i : δ ¯̄ε i)

W out
2 = ∑

i∈outside

(
δ ¯̄σ i : δ ¯̄ε i) (4.11)

Similar to the volumetric strain curve, the inside shear band second-order work (W in
2 ) and

the outside shear band second-order work (W out
2 ) diverge when the shear band appears. W in

2

shows a significant decreasing dropping to negative values whereas the W out
2 stays positive.

It should be noted that the number of elements inside the shear band is much less than the

number of elements outside the shear band. Finally, this result recovers the fact that the

material response and the underpinning mechanisms are totally different inside shear band

area and outside shear band area (Desrues et al., 1996; Vardoulakis et al., 1978; Zhu et al.,

2016).

Figure 4.18 reveals the microscopic variable distributions at Gauss points inside and

outside shear band for specimen T1 at the state of εa = 6%. Similar with Figure 3.13, the

mesostress is integrated over θ and ψ as σ̃ I
n(ϕ) =

∫∫
ωσ̃ndθdψ . By comparing sub-figures

in Figure 4.18, the first remark is that all the micro variables show symmetrical distributions,
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Figure 4.17 Evolution of the volumetric strain εv (%) and the second-order work W2 (J) with
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Figure 4.18 Microscopic variable distributions for Gauss points with inside and outside shear
band: (a1) and (b1) integrated microstress σ̃ I

n(ϕ); (a2) and (b2) plastic (blue) and failure
(red) percentage of meso-structure along oriented along different directions.
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with symmetry axes oriented along different directions. It is because a significantly shear

deformation can be observed inside the shear band. It should be noted that the microstress

σ̃ I
n(ϕ) distribution can reflect the force fabric from another side. Similarly, the plastic and

failure meso-structure distributions correspond to the contact fabric. From a microscopic

point of view, the 3D-H model shows properly anisotropy distributions of both fabric for

Gauss points located inside and outside the shear band, but without involving any anisotropy

parameter. For the sake of illustration, it can be observed that the magnitude of σ̃ I
n(ϕ) in

Figure 4.18(b1) is much higher than that is in Figure 4.18(a1), but Figure 4.18(b1) shows a

narrow range. It is because a wide range of failure exists in Figure 4.18(b2) due to the dilatant

behavior inside the shear band. This failure mechanism naturally leads to the anisotropic

distribution.

4.5 Directional analysis of second-order work
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(a) Strain probes in the
incremental strain space.
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(b) Stress responses in the
incremental stress space.

Figure 4.19 Strain probes and stress responses.

The aim of this section is to analyze the sign of the second-order work calculated from

the finite element model. Considering a conventional drained triaxial test such as T1, some
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selected stress-strain states are firstly saved along the drained triaxial loading path. Then,

strain probes are carried out at these stress-strain states to analyze the model response. Thus,

the second-order work can be computed along these directions.

Basically, this method requires the incremental loading is sufficiently small, which is

necessary due to the non-linearity of the material response. Thus, incremental strain probes

are applied with a uniform magnitude (||δ ε⃗||= 1×10−6). The angle αε between δε1 axis and

δ ε⃗ direction is depicted in Figure 4.19a. By varying αε from 0◦ to 360◦, each strain direction

can be considered and the corresponding stress response can be calculated. Similarly, the

angle ασ (see Figure 4.19b) is defined as the angle between δσ1 axis and δ σ⃗ direction in the

incremental stress space.
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Figure 4.20 Mechanical and volumetric responses of T1 under triaxial loading at 200 kPa of
confining stress.

Figure 4.20 gives the mechanical and volumetric responses of T1 under triaxial loading

conditions with 200 kPa of confining stress. Three states ( 1⃝, 2⃝ and 3⃝) are selected to

perform a second-order work directional analysis. State 1⃝ corresponds to the end of the



4.5 Directional analysis of second-order work 101

isotropically compression stage and state 3⃝ corresponds to the stress peak. During the

hardening phase, state 2⃝ is selected.

The result of second-order work directional analysis is illustrated in Figure 4.21, which

shows the polar diagram of normalized second-order work in the incremental stress space and

in the incremental strain space, respectively. The shaded circle represents the vanishing of

the normalized second order work. It takes negative values inside the circle. At the beginning

(state 1⃝), W2n distributes outside the shaded circle, which means that the sign of W2n along

all directions is positive. However, as the axial strain increases, negative values of W2n

appear in the second quarter of the incremental strain space, and in the third quarter of the

incremental stress space. The cone covering the area of negative value of W2n is the so-called

instability cone, indicating that the system is unstable when the loading direction is located

inside (Hadda et al., 2013; Nicot et al., 2007b; Prunier et al., 2009b). It is worth noting that

the instability cone appears at a stress-strain state, much before the deviatoric stress limit is

reached (state 3⃝). It is consistent with the results obtained from other constitutive models

and DEM investigations (Nicot et al., 2007b; Sibille et al., 2007).

For the sake of illustration, several stress directions with respect to Figure 4.21b are

considered, inside or outside the instability cone, as ασ = 220◦,235◦,242◦ and 250◦. Thus,

to detect the loss of sustainability for the specimen in an equilibrium mechanical state (state

3⃝), the stress probes are used with a uniform magnitude (||δ σ⃗ ||= 5kPa). Figure 4.22 reveals

that for the loading directions with respect to ασ = 235◦ and ασ = 242◦ (strictly inside the

instability cone corresponding to negative values of second-order work), an abrupt increase

in kinetic energy develops, until the system entirely collapses. However, for the loading

directions with respect to ασ = 220◦ and ασ = 250◦ (corresponding to the directions inside

the instability cone, close to the upper and the bottom boundaries, respectively), the increase

in kinetic energy is much lower, and the system finally covers a quasi-static equilibrium with

that the kinetic energy close to zero.



102 Finite element implementation of the 3D-H model

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

−1 −0.5 0 0.5 1

a

b

c

+

-

ε1 = 0%

ε1 = 2%

ε1 = 4%

(a) Polar diagram of normalized W2n in incremental strain space.

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

−1 −0.5 0 0.5 1

+

-

ε1 = 0%

ε1 = 2%

ε1 = 4%

(b) Polar diagram of normalized W2n in incremental stress space.

Figure 4.21 Polar diagram of normalized W2n in incremental stress space and strain space
using strain probes at different loading states with 200 kPa of confining stress.
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Figure 4.22 Evolution of kinetic energy versus simulation time with respect to different stress
directions corresponding to Figure 4.21b.

Taking advantage of the micromechanically-based model, the second-order work can be

analyzed not only on the element scale but also on the hexagonal pattern scale (meso-scale).

For this purpose, three typical directions (see in Figure 4.21a directions a⃝, b⃝ and c⃝) are

selected to analyze the angular distribution of second-order work. Direction b⃝ corresponds

to strain probes inside the instability cone and directions a⃝ and c⃝ are located outside the

instability cone. For the sake of clarity, the distribution of W meso
2n is plotted in 2D rather than

in 3D. Thus, W meso
2n is computed as a function of angle ϕ by integrating over the two Euler

angles (θ and ψ) as follows:

W meso
2n (ϕ) =

∫∫
δ F⃗δ l⃗

||δ F⃗||||δ l⃗||dθdψ∫∫
dθdψ

(4.12)

Figure 4.23 shows angular distributions of micro variables in terms of ϕ along the three

strain probe directions a⃝ b⃝ and c⃝ at 2% of axial strain. It should be noted that each

direction in Figure 4.23 represents a surface in 3D conditions. Figure 4.23a illustrates the



104 Finite element implementation of the 3D-H model

0◦

30◦

60◦

90◦

120◦

150◦

180◦

0

20

40

60

80

100

Failure
Plastic

(a) Angular distributions of the percentage of
plastic and failure meso-structures along ϕ .

0◦

30◦

60◦

90◦

120◦

150◦

180◦

−1

−0.5

0

0.5

1

+-

a©
b©
c©

(b) Angular distributions of W meso
2n along ϕ by

applying the strain probes inside ( b⃝) and outside
( a⃝, c⃝) the instability cone.

Figure 4.23 Angular distributions of micro variables when the strain probes are applied at
2% of axial strain.

percentage of plastic and failure meso-structures in this surface. A failure meso-structure

means that at least one contact inside the meso-structure opens, leading to a mechanical

softening. Besides, the plastic meso-structure denotes that at least one contact reaches the

plastic regime. Figure 4.23b presents the angular distributions of W meso
2n over ϕ under strain

probes a⃝, b⃝ and c⃝.

As shown in Figure 4.23b, W meso
2n inside the failure zone is merely equal to zero. Obvi-

ously, the strain probe a⃝ directs identical and positive value of W meso
2n within the plastic zone.

The curve c⃝ shows a slight decreasing compared to a⃝, but with positive values of W meso
2n .

When loading direction b⃝ is considered, a large set of material directions are associated with

a negative value of W meso
2n . This evidences that the meso-structure located in the non-failure

area can be potentially unstable.
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4.6 Closing remarks

A 3D multi-scale approach has been developed and further analysis has been carried out to

investigate the occurrence of strain localization along drained triaxial loading paths. To avoid

too much sophisticated equations requiring a large number of parameters as introduced in

most of conventional phenomenological models, a micromechanically-based model, named

3D-H model, was implemented within a FEM code. The proposed multiscale approach offers

a straightforward way to establish the macro-micro relationship wherein the FEM is used

to solve BVPs and the 3D-H model is employed as the constitutive relation taking place at

Gauss points.

Taking advantage of a micromechanically-based approach, only four parameters are in-

volved. The model parameters were firstly calibrated from comparisons with the experimental

data on Ticino sand. Then, drained triaxial tests in plane strain conditions were carried out.

A series of aspects were considered, including boundary conditions, material imperfections,

initial void ratio and confining stress. A system of shear bands has naturally emerged from a

homogeneous specimen, corresponding to a proper bifurcation in the mechanical response of

the specimen. A shear band area definition was proposed, and the material response inside

and outside the shear band was separately analyzed.

The directional analysis of second-order work was performed. The sign of second-order

work is considered as an indicator of material instability. Incremental strain probes were

used to detect the vanishing of the second-order work at distinct stress-strain states along a

triaxial loading path. An instability cone has been clearly observed in the polar diagram of

normalized second-order, indicating the potentiality unstable of the materials. Additionally,

loading directions located inside the instability cone were also analyzed on the mesoscopic

scale, to highlight the major influence of the anisotropic behavior on this scale.





Chapter 5

Engineering applications based on the

second-order work criterion

The multiscale approach is a powerful numerical tool in solving boundary value problems

pertaining to strain localization and rich complex material responses of granular media,

as fully demonstrated in the previous chapter. Many applications in material sciences

and engineering designs and operations can benefit from this advanced approach. In this

chapter, more complicated geotechnical engineering problems are investigated using this

novel numerical tool. Specifically, a standard problem routinely encountered in geotechnical

engineering and/or mining and energy extraction industries - the footing problem- is chosen

for such a purpose. In contrast to the previous two chapters, this chapter is devoted to

giving a demonstration of the capabilities of the multiscale method in solving the engineering

problems, instead of detailed analysis of the problems themselves.
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5.1 Second-order work criterion

As reviewed in section 2.3, many examples of granular systems pertaining to instabilities have

been reported. Herein, this chapter restricts to divergence instabilities, which means that the

system is suddenly no longer able to sustain external forces and experiences large deformation,

with strains increasing rapidly over time. This phenomenon is called diffuse failure (Darve

et al., 2004), in contrast with localized failure, when the kinematic field presents a chaotic

aspect with no visible localization pattern. In fact, this is a proper bifurcation mode, since

there is an abrupt transition from a quasi-static regime towards a dynamical regime. Through

a proper formalism, this section investigates how the kinetic energy of a system initially in

equilibrium can arise when a certain external incremental loading is applied.

For this purpose, consider a material body of volume V0 and density ρ0 enclosed by

boundary (Γ0) in a initial configuration C0 at time t0. Following a certain loading history,

the body is in a strained configuration C and occupies a volume V of boundary (Γ ), in

equilibrium under a prescribed external loading. This loading is defined by specific static

or kinematic parameters, referred to as the loading parameters (Klisinski et al., 1992; Nova,

1994; Runesson and Mroz, 1989). The current boundary (Γ ) of the material can be resolved

into a part (Γσ ) controlled by static parameters, and a complementary part (Γε ) controlled by

kinematic parameters. f⃗ denotes the surface density of force applied to Γσ and u⃗ represents

the displacement field imposed to each point of Γε . It is assumed hereafter that the physico-

chemical properties of the constituents of the system being studied are not altered, and that no

matter is added to or removed from the system. In addition, only isothermal transformations

will be considered, so that the system can only exchange mechanical energy with the exterior.

Adopting a semi-Lagrangian formulation (each material point x⃗ of the current con-

figuration C corresponds (through bijective mapping) to a material point X⃗ of the initial

configuration C0), and in absence of body forces, the evolution of each material point of the
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system is given by the equation

ρ0⃗ui −
∂Πi j

∂X j
= 0 (5.1)

where ¯̄
Π is the first Piola–Kirchoff stress tensor. The kinetic energy of the whole system

reads:

Ec =
1
2

∫
V0

ρ0 ˙⃗u2dV0 (5.2)

where ˙⃗u(X⃗) is the Lagrangian velocity field. It is convenient to express the integrals in

Equation 5.2 with respect to the initial configuration. Thus, a double time differentiation of

Equation 5.2 yields

Ëc =
∫

V0

ρ0 ¨⃗u2dV0 +
∫

V0

ρ0 ˙⃗u
...
u⃗dV0 (5.3)

Combining Equation 5.3 with Equation 5.1 gives:

Ëc =
∫

V0

ρ0 ¨⃗u2dV0 +
∫

V0

u̇i
∂ Π̇i j

∂X j
dV0 (5.4)

By virtue of the Green formula, Equation 5.4 can be rewritten as:

Ëc =
∫

V0

ρ0 ¨⃗u2dV0 ++
∫

∂V0

u̇iΠ̇i jN jdS0 −
∫

∂V0

u̇i
∂ Π̇i j

∂X j
dV0 (5.5)

The result is that the second-order time derivative of the kinetic energy is the sum of three

terms:

• The first term I2 =
∫

V0
ρ0 ¨⃗u2dV0 is an inertial term. This is the quadratic average of the

acceleration; this term is therefore always positive.

• The second term
∫

∂V0
u̇iΠ̇i jN jdS0 =

∫
∂V0

u̇iṡidS0 is a boundary term involving the

loading parameters (the displacements u⃗ and the current external forces f⃗ with d f⃗ =

s⃗dS0) acting on the boundary of the initial (reference) configuration of the system. It is

hereafter called the external second-order work W ext
2 .
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• The third term explicitly introduces the second-order work, which is expressed follow-

ing a semi-Lagrangian formalism (Hill, 1958) as
∫

V0
Π̇i j

∂ u̇i
∂X j

dV0 =
∫

V0
Π̇i jḞi jdV0, where

¯̄F is the tangent linear transformation. This term is related to the constitutive behavior

of the material and is therefore referred to as the internal second-order work W int
2 . It

should be noted that at any material point of the system, both the stress rate tensor ˙̄̄
Π

and velocity gradient tensor ¯̇̄F are related by the constitutive relation Π̇i j = Li jklḞkl ,

where the fourth-order tensor
4
L is the tangent constitutive tensor for rate-independent

materials.

It follows that Equation 5.5 can be expressed as:

Ëc = I2 +W ext
2 −W int

2 (5.6)

When the system is quasi-static, the inertial term I2 and the kinetic energy Ëc are nil.

Thus, Equation 5.6 yields:

W ext
2 =W int

2 (5.7)

Equation 5.7 means that the internal second-order work is equal to the external second-

order work, when the system is in a quasi-static regime.

5.2 Numerical applications

5.2.1 Laboratory test

Based on the multiscale approach presented in the previous section, a full three-dimensional

cylindrical specimen subjected to a drained triaxial loading path is considered as a homoge-
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neous BVP. The mesh, element type and boundary conditions are described in Figure 5.1.

The cylinder with diameter D = 2R and height H = 4R is discretized into 18580 elements.

The bottom surface of the specimen is permanently fixed while the confining stress σc is

applied to the side surface. The loading program prescribed to the specimen includes three

stages: isotropically confining stage under the stress σc, strain control stage and stress control

stage. The specimen is isotropically compressed at 200kPa during the first stage. Then, a

triaxial loading path is imposed by prescribing to the top surface a constant loading speed.

Finally, the loading process is switched to a stress control when the axial stress reaches a

maximum value. The displacement of the top surface along direction v⃗1 is denoted by d1

while the external force is denoted by f1. During the stress control, f1 is imposed constant,

corresponding to the maximum value of top loading at the end of the strain control stage.

Figure 5.2 shows the mechanical and volumetric responses for the 3D cylinder specimen

along a drained triaxial loading path. As shown in Figure 5.2, the deviatoric stress increases up

to the peak (the dashed line ∗⃝ when εa = 2.7%) and then decreases, with both hardening and

softening regimes well reproduced. Meanwhile, the volumetric response shows a contractant

behavior before εa = 1% and a dilatant behavior after as expected for dense sand under a

drained triaxial loading path. It should be noted that the external stress loading applied to

the top surface of the specimen is constant during the stress control stage. The shadow area

between the deviatoric stress curve and external stress loading curve is the excess external

work, which will be converted into kinetic energy for the system.

As discussed in section 5.1, the external second-order work, based on the prescribed

loading condition, reads:

W ext
2 = ḟ1ḋ1 (5.8)

In 3D conditions, the internal second-order work of the specimen is expressed as:
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Figure 5.1 Mesh, element type and boundary conditions for the 3D cylinder specimen.
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Figure 5.2 Mechanical and volumetric responses for a 3D cylinder specimen along a drained
triaxial loading path under a confining pressure of 200kPa.
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Figure 5.3 Deviatoric strain fields (εq) at some selected states corresponding to Figure 5.2

(a) εa = 2.7% (b) εa = 7% (c) εa = 8% (d) εa = 9%

Figure 5.4 Vertical section view of deviatoric strain field (εq) at some selected states corre-
sponding to Figure 5.2
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Figure 5.5 Evolution of external and internal second-order works versus axial strain εa (%)
for a 3D cylinder specimen.

W int
2 =

n

∑
i=1

(
δ ¯̄σ i : δ ¯̄ε i)Vi (5.9)

where i is the element indicator, n is the total number of elements, Vi is the volume of the

element i.

By using Equation 5.8 and Equation 5.9, the evolution of external and internal second-

order works plotted against the axial strain along the drained triaxial loading path is shown

in Figure 5.5. It should be noted that the dashed line ∗⃝ corresponds to the transition from

the strain control mode to the stress control mode. As shown in Equation 5.6, the internal

second-order work is equal to the external second-order work during the strain-controlled

regime because Ëc and I2 is nil. This is verified in Figure 5.5 where the two curves are quite

close before the dashed line ∗⃝. The very little difference between the two curves is due to

the fact that the loading program is not perfectly static and small inertial mechanisms can

develop. As the deviatoric stress reaches the peak, the internal and external second-order
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Figure 5.6 Evolution of kinetic energy Ec (J) versus axial strain εa (%) for 3D cylinder
specimen.

works both vanish. Then, the loading method is switched to a stress control. As can be

observed in Figure 5.5, the external second-order work after the dashed line ∗⃝ is zero as

ḟ1 = 0. However, the internal second-order work is strictly negative after the dashed line ∗⃝.

The difference between internal and external second-order works implies that Ëc is positive,

which means that the system bifurcates which from a quasi-static regime to a dynamical

one. This is verified in Figure 5.6 where the evolution of kinetic energy of the whole system

versus the axial strain is shown. The kinetic energy is close to zero during the quasi-static

regime, but it abruptly increases once the loading is stress controlled.

5.2.2 Geotechnical engineering problem

The strip footing problem is an example of a non-homogeneous boundary value problem. The

multiscale approach presented in chapter 4 is used. The mesh, element type and boundary

conditions are depicted in Figure 5.7. For the purpose of simplification, only half of the
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Figure 5.7 Mesh, element type and boundary conditions for the footing problem.

domain is modelled due to the symmetry of the problem. The half domain is discretized into

56×94 elements by using the C3D8R element type. The half-domain width is L/2 = 7.5m

and the depth is H = 4.8m. The half-footing width is B/2 = 1m. The problem is considered

as a plane-strain problem. The bottom boundary is blocked in both x⃗ and y⃗ directions, whereas

the left and right boundaries are only blocked in the x⃗ direction but are free to move in the y⃗

direction. The footing is modelled as a rough and rigid strip.

The loading program prescribed to the system consists of three stages. The first stage

is the so-called geo-static stage, which means that the gravity is applied to the half-domain

while the footing is fixed. After the initial geo-stress field is assigned to the half-domain, a

displacement field is obtained. Then, the displacement field is removed after the consolidation

stage. Figure 5.8 shows the undeformed mesh with geo-stress distribution at the end of the

geo-static stage. As can be seen, the stress increases as the depth increases. The second stage

is a velocity control loading stage, the footing goes down with the vertical velocity v f =0.002

m/s until the third stage starts. The third stage is a force control loading stage. The reaction
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Figure 5.8 Undeformed mesh with geo-stress distribution at the end of geo-static stage.

force at the end of the second stage R′
f is recorded, and is applied to the footing top surface

as an external force Fext during the third stage.

Figure 5.9 shows the evolution of the vertical reaction force R f versus the footing

settlement d (normalized by the footing width B). The dashed line ∗⃝ is the transition

from the velocity control stage to the force control stage. Evidently, the curve increases

(hardening regime) before the peak and decreases after (softening regime). Figure 5.11

depicts the deformed meshes with distribution of deviatoric strain εp at d/B = 1%,2%,4%

and 8%, respectively. The deviatoric strain field (εp) initiates on the right-bottom corner of

the footing and spreads to deeper zones. When d/B = 4% (the peak state in Figure 5.9),

the strain progressively localizes, but no clearly shear band can be observed. As R f goes

through the peak (d/B = 8%), the reaction force applied from the soil to the footing cannot

accommodate the external loading due to the material softening. A triangular-shaped clod

appears under the footing and an inclined shear band beneath the clod develops. Furthermore,

the triangular-shaped clod can be clearly observed from the displacement field plotted in

Figure 5.10.
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Figure 5.9 Evolution of the vertical reaction force R f (kN) versus the footing settlement
normalized by the footing width d/B (%).
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Figure 5.10 Displacement field |⃗u| at the state d/B = 8%.
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Figure 5.11 Deformed meshes with distribution of deviatoric strain (εq) at different states:
d/B = 1%,2%,4% and 8%.
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Figure 5.12 Evolution of internal and external second-order works versus the footing settle-
ment normalized by the footing width d/B (%).

According to the prescribed loading program, the external second-order work is computed

from Equation 5.5 as:

W ext
2 = ḋṘ f (5.10)

As a non-homogeneous boundary value problem, the material points of the discretized

system behave differently, leading to a spatial distribution of both stress and strain. The

internal second-order work of the system is expressed as:

W int
2 =

n

∑
i=1

(
δ ¯̄σ i : δ ¯̄ε i)Vi (5.11)

where i is the element number, n is the total number of elements, Vi is the volume of the

element i.



5.2 Numerical applications 121

0 1 2 3 4 5 6 7 8
0.00

0.50

1.00

1.50

2.00

2.50

∗

d/B (%)

E
c

(k
J
)

.

Figure 5.13 Evolution of kinetic energy Ec (kJ) of the whole system versus the footing
settlement normalized by the footing width d/B (%).

Figure 5.12 gives the evolution of internal and external second-order works plotted

against the normalized footing settlement. It is remarkable that the internal and external

second-order works approximately coincide during the velocity-controlled loading regime

(0< d/B< 5.5%). Since the velocity applied to the footing is small enough, the system can

be considered as quasi-static. According to Equation 5.6, the difference between internal

and external second-order works is related to the inertial term I2 and to the second-order

time derivative of the kinetic energy Ëc, both negligible. It is worth noting that both internal

and external second-order works are positive during the first loading stage. The vanishing

of the second-order work corresponds the stress peak in Figure 5.9, around d/B = 4%. As

seen in Figure 5.12, the two second-order work curves become more and more divergent

after d/B = 4%, indicating that the system is no longer stable. Especially, after the transition

from velocity control to force control (dash line ∗⃝), the internal second-order work is strictly

negative whereas the external second-order work equals zero as R f = R′
f = constant. The
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.

Figure 5.14 Deformed meshes with normalized internal second-order work distribution at the
state d/B = 8%.

difference between internal and external second-order works results in an abrupt increase in

kinetic energy, which is evidently observed in Figure 5.13.

For each element, the internal second-order work can be normalized as follows:

W int
2n =

δ ¯̄σ : δ ¯̄ε
∥ δ ¯̄σ ∥∥ δ ¯̄ε ∥ (5.12)

Figure 5.14 shows the deformed mesh with normalized internal second-order work distri-

bution at the state d/B = 8%. Negative values of W int
2n mainly concentrate within two areas:

A shear band area below the triangular-shaped clod and an arc-shaped area in the shallow

soil. The former is due to the occurrence of a strain localization. The mechanical response of

Gauss points inside this area follows a softening regime, which means that the term σ̇xε̇x is

negative and can vanish W int
2n (see Figure 5.15). It should be noted that significant negative

values of internal second-order works concentrate at the boundaries of shear bands. The latter

is formed because of the dilatancy behavior of the material, resulting in σ̇yε̇y to be negative.

Featuring a major advantage, the presented multiscale approach provides a straightforward

way to perform both micro and meso scale analysis. The key microscopic behaviors hidden
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Figure 5.15 Evolution of deviatoric stress ratio versus normalized footing settlement cor-
resonding to selected Gauss points seen in Figure 5.7.

behind the macroscopic scale are helpful to understand and interpret the micro-mechanisms

governing the overall response. For the purpose of demonstration, several representative

Gauss points are selected in Figure 5.7. They are located at the same depth to make sure

that their initial states are same. Gauss point A locates inside the triangular-shaped clod,

Gauss point B locates inside the shear band and Gauss point C locates outside the shear

band. Figure 5.15 presents the evolution of deviatoric stress ratios q/p of these three Gauss

points against the normalized footing settlement d/B. The three curves show increasing

trend before d/B = 4%, but the curves for Gauss points A and B decrease after that. The

curves for Gauss points A and B cross at the same intersection point and bifurcate to different

branches. It is remarkable that the intersection point locates on the dashed line P⃝ (d/B = 4%,

corresponding to the stress peak in Figure 5.9). The curves of Gauss point A and B practically

coincide before dashed line P, but they behave differently after that. Indeed, Gauss point B

locates inside the shear band while Gauss point A does not. Moreover, this is the reason

why the internal second-order work inside shear band is negative while it is positive outside
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shear band (see Figure 5.14). Finally, these results confirm that the material response and the

underpinning mechanisms are totally different inside shear band area and outside shear band

area (Desrues et al., 1996; Vardoulakis, 1996; Vardoulakis et al., 1978; Zhu et al., 2016).

5.3 Closing remarks

This chapter has presented a novel effective multiscale approach to solve geotechnical

boundary value problems. This multiscale approach is implemented within a FEM software

to tackle macroscopic BVPs from a micromechanically-based model to build the stress-strain

relations at the Gauss points of the FEM mesh.

In order to illustrate the capability of this approach, two examples are considered with

homogeneous conditions and non-homogeneous conditions. The first example presents

a cylindrical specimen subjected to a drained triaxial loading path under an isotropically

confining stress whereas the second example illustrates a geotechnical boundary value issue.

From a numerical point of view, both analyses verify that when no effective failure occurs,

both internal and external second-order works coincide. This is a great advantage since

the external second-order can be obtained in a straightforward manner from the boundary

variables without requiring only internal information (internal stress or strain fields).

Furthermore, this multiscale approach utilizes an explicit-dynamic integral method so

that the post-peak failure can be investigated. Thus, by switching the loading method from a

strain control to a stress control at the limit state, the collapse of the system can be reflected

in an abrupt increase with system kinetic energy, stemming from the difference between both

internal and external second-order works.

Finally, taking advantage of the multiscale approach, the analysis can also be carried

out on the REV scale. The vanishing of the second-order work, as a convenient indicator
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of material instability, reveals a close correlation with the occurrence of strain localization.

For the sake of illustration, three Gauss points were selected to examine local responses,

illustrating the difference in the mechanical responses inside and outside shear band areas.





Chapter 6

Conclusions and recommendations

A great variety of numerical simulations were carried out in this research work as a means

to delve further into the understanding and modeling the complex behavior of granular

materials. A novel constitutive model was firstly formulated to describe the complex behavior

of granular materials. This model is then implemented within a FEM code by using a

multiscale approach in order to capture pertinent failure patterns and instability mode.

After that, various boundary value problems ranging from laboratory tests to geotechnical

engineering problems are considered. This last chapter concludes this rather extensive

research work. The most salient findings from each Chapter are recalled and, finally, a

general conclusion is elaborated. Despite great efforts have been made to explore recent

theoretical, experimental and numerical studies of granular materials, this dissertation is

far from being complete as many other aspects of the problem can still be explored. As such,

recommendations for future research are presented.
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6.1 Conclusions

The content of this thesis is systematically divided into three parts which are complementary

to each other. With an appreciation of the microscopic origins and mechanisms that govern

the macroscopic responses of the material, the first part is solely devoted to the development

of a micromechanically-based constitutive model, which will be used in the subsequent

simulations. In the second part, the microscopic and the macroscopic characterizations of

granular media behavior are bridged under a unique framework called multiscale modeling.

Various boundary value problems are examined using this approach, where macro-micro

responses and occurrence of strain localization are carefully explored. In the last part, the

method is further applied to solve practical geotechnical engineering problems.

6.1.1 Constitutive modeling of granular materials by considering mi-

crostructure

Granular materials are multiscale in nature. They are often modeled as a continuum, for

which many advanced constitutive models have been developed. Having gained certain

successes in reproducing some salient behaviors of granular media, these continuum models

have various limitations as they overlook the discrete nature of the materials. For example,

the fabric evolution and the particle rearrangement are two characteristics associated with

granular media which are absent in most existing continuum constitutive models. These

less-noticed characteristics, which have been evidenced to play a role in determining the

macroscopic responses of a granular material, are encoded at the microscopic level of the

material. Therefore, a multiscale investigation is indispensable to improve our understanding

of the complex granular media behavior, which has been the main focus of this thesis.
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In the first part, the micro-directional model and the H-directional model are firstly

reviewed. Based on the homogenization scheme, the H-directional model is extended to 3D

conditions by replacing the 2D hexagonal pattern with a 3D meso-structure. For this purpose,

a decomposition and superimposition approach is introduced to analyze the local behavior of

the meso-structure. The 3D-H model only introduces four parameters, wherein kn, kt and ϕg

stem from the elastic-perfect plastic inter-particle contact law. The forth one (the opening

angle α0) is a key microscopic geometrical parameter which can be estimated from the initial

void ratio. It is noteworthy that the granular assembly rearrangement can be reflected by the

evolution of the opening angle α0.

By comparing with experimental results on Ticino sands, the calibration of the model is

carried out and the predictive capabilities are examined along drained triaxial compression

loading paths. The results obtained are both qualitatively and quantitatively satisfying. The

hardening and softening regimes are well reproduced in terms of the stress-strain response.

Meanwhile, the dilatant and contractant regimes are also well described with the volumetric

strain curve. By adopting the calibrated parameters, two sets of numerical tests are run,

including different confining stresses and initial void ratios. One of the most significant

findings emerging from this study is that the critical state can be approximately described

from void ratio evolution without involving any CSL formulations and parameters. The model

mechanism is also analyzed from a microscopic point of view. The angular distributions of

micro variables are plotted at different strain states under the drained triaxial loading paths.

The conclusions of this micro-structural analysis are: (1) the force fabric within the material

shows an anisotropy distribution after the deviatoric stress applied to the specimen; (2) the

local stress σ̃n plays a major role along the axial compression direction (ϕ = 0 or 180◦); (3)

the opening angle α is a key geometrical parameter, which reveals the rearrangement of the

specimen.
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6.1.2 Finite element implementation procedure

For decades, FEM has been widely applied in modeling BVPs of granular media due

to its efficiency and robustness, wherein the material is treated as a continuum. These

considerations motivate the development of a multiscale modeling approach in this thesis

which bypasses the phenomenological constitutive model by embedding a micromechanically-

based model at the FEM Gauss points and retains the FEM computational efficiency in solving

large scale BVPs. The proposed multiscale approach offers a straightforward way to establish

the macro-micro relationship wherein the FEM is used to solve BVPs and the 3D-H model

is employed as the constitutive relation taking place at Gauss points. By implementing the

3D-H model within a FEM code (ABAQUS), multiple (micro, meso and macro) scales are

bridged in a unique framework. Many macroscopic observations such as strain localization

could be tracked and explained coherently by their micro and mesoscopic behaviors.

Taking advantage of a micromechanically-based approach, only four parameters are

involved. The model parameters were firstly calibrated from comparisons with the exper-

imental data on Ticino sand. Then, tests along drained biaxial loading paths were carried

out to investigate the occurrence of strain localization. A series of aspects were considered,

including boundary conditions, material imperfections, initial void ratio and confining stress.

A system of shear bands has naturally emerged from a homogeneous specimen, correspond-

ing to a proper bifurcation in the mechanical response of the specimen. A shear band area

definition was proposed, and the material response inside and outside the shear band was

separately analyzed.

The directional analysis of the second-order work was performed. The sign of second-

order work is considered as a indicator of material instability. Incremental strain probes

were used to detect the vanishing of the second-order work at distinct stress-strain states

along a biaxial loading path. An instability cone has been clearly observed in the polar
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diagram of normalized second-order in both incremental strain and incremental stress spaces.

Additionally, loading directions located inside the instability cone were also analyzed on the

hexagon scale, to highlight the major influence of the anisotropic behavior emerging on this

scale.

6.1.3 The occurrence of strain localization

The occurrence of strain localization is regarded as the precursor of many catastrophic failure

of geomaterials and pertaining geostructures. The multiscale approach has been proven to

be an ideal tool which is compared with the experimental results by providing an integrated

multiscale perspective. In addition, complex granular media characteristics such as local

dilatancy and grain rearrangement can be naturally captured and conveniently incorporated

by introducing a meso-structure. The most important findings are as follows:

• It is shown from the study that strain localization can occur in a uniform sample with

symmetric smooth boundary conditions without introducing any artificial imperfection

due to the numerical perturbation, which serves as a mechanism of symmetry breaker.

Undoubtedly, the imperfection point or non-symmetric boundary point can initiate

the strain localization, from which the shear band develops. At the occurrence of

strain localization, the perfectly homogeneous specimen bifurcates at a bifurcation

point, which occurs at around the stress limit, indicating the loss of uniqueness of the

quasi-static solution of the BVPs. This loss of uniqueness corresponds to the violation

of Rice’s criterion (Rudnicki and Rice, 1975) at some points, illustrating the phases

transition from homogeneity to inhomogeneity.

• When the specimen transforms from homogeneous conditions to non-homogeneous

conditions along the biaxial loading path, significantly negative values of internal
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second-order work distribute inside the shear band. It is illustrated in this study that the

internal second-order work is a convenient indicator for analyzing material instabilities.

• The extra boundary constraint influences the global behaviors significantly. Noticeable

resultant shear stress develops as the shear band initiates. In contrast to the single shear

band pattern in the symmetric boundary conditions, X-shape shear bands are observed

under the non-symmetric boundary conditions. In addition, the confining stress applied

to the specimen and the initial density also influence the global behaviors and the shear

band formation.

• A cross-scale is achieved to fully unleash the predictive power of this approach.

Simulations of monotonic biaxial compression test and the axisymmetric triaxial test

on sands highlight the advantages of the multiscale approach. When the occurrence of

strain localization is observed in the monotonic biaxial compression test, local analyses

show that the local Gauss points outside the shear band may undergo unloading

and develop relatively small deformations, whereas those inside the shear band may

experience substantial shear deformation and reach the critical state. It is also found

that a small proportion of Gauss points fail along the edges of the shear band after

very large deformation with unconfined dilation. The contact force at the Gauss points

inside the shear band show more contact forces along the loading direction which is

aligned with the major compression direction. These results are qualitatively consistent

with observations from laboratory tests and other numerical simulations.

6.1.4 Simulation of geotechnical boundary value problems

In order to illustrate the capability of this approach, the multiscale approach is then applied

to solve geotechnical boundary value problems. By using an explicit-dynamic integral
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method, the responses of the system can be tracked the post-peak failure. Two examples are

considered with a homogeneous condition and a non-homogeneous condition.

The former presented a cylindrical specimen subjected to a drained triaxial loading

path under an isotropically confining stress. By switching the loading control mode from a

strain control mode to a stress control mode at the stress peak, the system transforms from

a quasi-static regime to a dynamic regime. The internal and external second-order works

coincide during the strain-controlled regime. However, as the deviatoric stress reaches the

peak, the internal and external second-order works both vanish. The difference between

internal and external second-order works implies that the second-order time derivative of the

kinetic energy is positive, resulting in an abrupt increase of system kinetic energy.

The latter illustrates a strip footing problem in plane strain conditions as a non-homogeneous

boundary value problem. From a numerical point of view, it verifies that when no effective

failure occurs, both internal and external second-order works coincide. This is a great advan-

tage since the external second-order can be obtained in a straightforward manner from the

boundary variables without requiring internal information (internal stress or strain fields),

especially for the geotechnical engineering problem.

Finally, taking advantage of the multiscale approach, the analysis can also be carried

out on the REV scale. The vanishing of the second-order work, as a convenient indicator

of material instability, reveals a close correlation with the occurrence of strain localization.

For the sake of illustration, three Gauss points were selected to examine local responses,

illustrating the difference in the mechanical responses inside and outside shear band areas.
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6.2 Recommendations

In this dissertation, great effort has been made to explore recent constitutive modeling of

granular materials. However, the research work accomplished here is far from being complete

as other aspects of the problem can still be investigated.

Although the current 3D-H model is shown to be robust, there are still some aspects

to be considered in order to increase the performance of this model. For instance, more

sophisticated mechanisms of particle rearrangement should be considered. The response of

the material in large strains regime remains difficult to simulate. This is challenging, as the

so-called critical state is thought to stem from a collective behavior of the specimen. This is

something very difficult to reproduce with the 3D-H model, as all the 3D hexagonal patterns

are independent. Collective effects take place only on the mesoscale, and not on the specimen

scale. Further researches are needed to progress along this line. On the other side, the current

version of 3D-H model only breaks meso-structures when there is more than one contact that

open, but no creation mechanism of the meso-structure is included. As a result, the response

of this model under large strains is imperfect. Thus, the first question to be addressed is:

how and when to create new meso-structures in order to improve the behavior under large

strains? More generally, instead of creating new meso-structures, more different forms of

meso-structures can be considered, such as the tetrahedron made up of four particles. The

particle rearrangement of the specimen can be reflected in the transition between different

meso-structures, as commonly observed in granular materials.

Natural processes usually involve multiphysics phenomena, such as heat and mass

transportation, electro-magnetic radiation and wave propagation inside a deformed solid

body. For the case of a granular soil, granular particles usually coexist with water and air

(even frozen ice, methane-hydrate, and oil). The multiphase character of soil actually has

been well recognized by researchers and engineers, and unsaturated soil mechanics is one of
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the most actively explored areas on the subject. For simplicity, only two phases have been

considered here: the solid skeleton and the pore water, i.e. the fully saturated granular media.

In addition, the erosion and diffusion processes need to be considered. One possibility is

to consider a non-fixed particle which can move into the meso-structure or remove from

it, resulting in the different behavior on the mesoscale. Thus, the erosion and diffusion

processes stand probably as promising future research areas.
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Appendix A

Detailed formulation in the 3D-H model

A.1 Inter-particle contact law

This elastic-perfect plastic model includes a Mohr-Coulomb criterion and can be expressed

under the following incremental formalism by employing the notations depicted in Figure 3.6

and Figure 3.7:


δNi = knδui

n

δTi = min
{∥∥Ti + ktδui

t
∥∥ , tanϕg

(
Ni + knδui

n
)}

× Ti+ktδui
t

∥Ti+ktδui
t∥ −Ti

(A.1)

where: i = 1,2,3,4 denotes the contact number.

According to Equations 3.21, Equations A.1 can be rewritten as follows:


δNi =−knδdi

δTi = ktdiδα j elastic regime

δTi = tanϕg (Ni − knδdi)ξi −Ti plastic regime

(A.2)
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where: ξi is the sign of Ti + ktdiδα j; j = 1 when i = 1,2; j = 2 when i = 3,4; plastic

regime is reached when ∥ ktdiδα j +Ti ∥> tanϕg (Ni − knδdi), otherwise elastic regime holds.

For the sake of convenience, Ip
i and Ie

i are introduced as indicator functions of the contact

state, expressed as below:

Ip
i =

 1 in plastic regime

0 in elastic regime
; Ie

i = 1− Ip
i (A.3)

Thus, the constitutive relations can be expressed as follows:

 δNi =−knδdi

δTi = Biδα j −Aiδdi +Ci

(A.4)

where:


Ai = Ip

i knξi tanϕg

Bi = Ie
i ktdi

Ci = Ip
i (ξi tanϕgNi −Ti)

A.2 Stiffness matrix on the mesoscopic scale

For Hexagon A, combining Equations 3.21 and Equations 3.26 gives:

 δFa
1 =−kn cosα1δd1 +(kt sinα1d1 −F2)δα1

δF2 =−kn sinα1δd1 +
(
Fa

1 − kt cosα1d1
)

δα1

(A.5)

Based on Equation 3.25, δd1 and δα1 can be expressed as follows:
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δd1 =

1
|D|a

(
2d1 cosα1δ l1 +

B1

kn
sinα1δ l2 +

B1

kn
δ l2 −

F2

kn
δ l2 +2d1 sinα1δ l2

)
δα1 =

1
|D|a

(
−2sinα1δ l1 +

A1

kn
sinα1δ l2 +

A1

kn
δ l2 +3cosα1δ l2

) (A.6)

where: |D|a = 2
kn

[
(B1 sinα1 +A1d1 cosα1)(sinα1 +1)−F2 sinα1 + knd1 cos2 α1 +2knd1

]
Then, Equations A.6 is substituted into Equations A.5:

 Ka
11 Ka

12

Ka
21 Ka

22


 δ l1

δ l2

=

 δFa
1

δF2

 (A.7)

where:



Ka
11 = 2

|D|a
(
F2 sinα1 − knd1cos2α1 − ktd1sin2

α1
)

Ka
12 = 1

|D|a (ktd1 sinα1 −F2)
(

A1
kn

sinα1 +
A1
kn
+3cosα1

)
− 1

|D|a cosα1 (B1 sinα1 +B1 −F2 +2knd1 sinα1)

Ka
21 = 2

|D|a (kt − kn)d1 sinα1 cosα1 −2Fa
1 sinα1

Ka
22 = 1

|D|a
(
Fa

1 − ktd1 cosα1
)(A1

kn
sinα1 +

A1
kn
+3cosα1

)
− 1

|D|a sinα1 (B1 sinα1 +B1 −F2 +2knd1 sinα1)

(A.8)

Similarly, for Hexagon B:

 Kb
11 Kb

12

Kb
21 Kb

22


 δ l1

δ l3

=

 δFb
1

δF3

 (A.9)
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where: 

Kb
11 = 2

|D|b
(
F3 sinα2 − knd3cos2α2 − ktd3sin2

α2
)

Kb
12 = 1

|D|b (ktd3 sinα2 −F3)
(

A3
kn

sinα2 +
A3
kn
+3cosα2

)
− 1

|D|b cosα2 (B3 sinα2 +B3 −F3 +2knd3 sinα2)

Kb
21 = 2

|D|b (kt − kn)d3 sinα2 cosα2 −2Fb
1 sinα2

Kb
22 = 1

|D|b
(
Fb

1 − ktd3 cosα2
)(A3

kn
sinα2 +

A3
kn
+3cosα2

)
− 1

|D|b sinα2 (B3 sinα2 +B3 −F3 +2knd3 sinα2)

(A.10)

with: |D|b = 2
kn

[
(B3 sinα2 +A3d3 cosα2)(sinα2 +1)−F3 sinα2 + knd3 cos2 α2 +2knd3

]
Finally, Equation 3.29 is recovered, with:


δF1 =

(
Ka

11 +Kb
11
)

δ l1 +Ka
12δ l2 +Kb

12δ l3

δF2 = Ka
21δ l1 +Ka

22δ l2

δF3 = Kb
21δ l1 +Kb

22δ l3

(A.11)
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Abaqus and VUMAT

This appendix briefly overviews the main framework of Abaqus, a finite element method

software package designed for solving general purpose engineering problems numerically.

The aim here is how Abaqus works and how it is organized. The structure of the user-defined

material subroutine for the dynamic problem, VUMAT, is also introduced and explained in

more details. The content put forward in this appendix was retrieved from Abaqus’ manuals,

to which it is here simply referred to as (Hibbitt and Sorensen, 2001). Readers familiar with

Abaqus and VUMAT operating frameworks may skip this appendix.

B.1 Framework

Abaqus is a commercial package of FEM-based programs designed to simulate a wide variety

of engineering problems ranging from relatively simple linear analysis to more complex

nonlinear ones. Some of the engineering areas Abaqus engages in are stress-displacement

problems, heat transfer, mass diffusion, coupled thermal-electrical analysis, acoustics, soil

mechanics and piezoelectric analysis. As expressed before, our sole interest here is in the soil

mechanics analysis mostly involving the geotechnical aspects (Hibbitt and Sorensen, 2001)
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There are two main solvers or analysis products: the Standard and the Explicit. The

former (Abaqus/Standard) is used to perform general-purpose analysis of either linear or

nonlinear static, dynamic, thermal and electorical response. The latter (Abaqus/Explicit) is

used in the specific-purpose analysis that is suitable for modelling transient dynamic events

of short duration such as impact and instabilities. Another fundamental feature distinguishes

these two solvers. At each increment, Standard implicitly solves the system of equations,

whereas Explicit does it directly through an explicit dynamic finite elemnt formulation.

These two analysis products work together with a larger environment or entity called

Abaqus/CAE (Complete Abaqus Environment). CAE is Abaqus controlling system, the

interface whence the user creates models, chooses analysis method, submits and monitors

jobs (simulates), visualizes and evaluates results. Each of these phases is organized as an

individual module making it easier to manage the entire modeling phase.

User subroutines
Constitutive model

Analysis
Simulation

ABAQUS/Standard
ABAQUS/Explicit

ABAQUS/CAE
Job control
Monitoring

Pre-processing
Modeling

Post-processing
Visualization

ABAQUS/Viewer

Input file
*.inp

Output files
*.odb,*.dat
*.res,*.fil

Figure B.1 Abaqus framework.

Figure B.1 shows the organization-flowchart of Abaqus framework. In a regular bound-

ary value problem analysis, the user defines the geometry, material properties, boundary

conditions, etc in the CAE, who then sends an execution command to either Standard or

Explicit solvers. The chosen analysis product, then, reads the input file, performs the core
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analysis and sends output database (file *.odb, *.dat, *.res, *.fil) back to CAE. Finally, the

raw results generated from the analysis are post-processed by Abaqus/Viewer, a visualization

subset of CAE interface.

B.2 User Subroutine: VUMAT

Abaqus/Explicit allows users to define their own constitutive model through a facility subrou-

tine called VUMAT. This is also feasible for Abaqus/Standard, although the name of the user

material subroutine is slightly different, called UMAT. This subroutine may interact with

other utility subroutines or functions built-in in Abaqus. These auxiliary functions involve,

for example, finding the invariants of stress and strain tensors as well as their principal

values and directions. Other important subroutines include reading prescribed non-linear

distribution of initial conditions (stress, pore pressure, solution-dependent state variables and

void ratio) to run the analysis. All these user subroutines enable the definition of initial values

according to coordinates and number for element and node variables. Users may also employ

their own bank for utility functions. The VUMAT code can be written in either FORTRAN

or C++ programming language.

Abaqus calls the user-material subroutine at each Gauss point for which a user-defined

material behavior is assigned. Particularly for the class of problems studied here, the arrays

of strain increments (STRAININC), user-material properties (PROPS) and current/updated

values of stresses (STRESSOLD/STRESSNEW) and current/updated solution-dependent

state values (STATEOLD/STATENEW) are passed on to VUMAT over a finite time increment,

along with their corresponding dimensions. Figure B.2 shows the general interface of a

VUMAT subroutine code in FORTRAN language.
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Figure B.2 User-material subroutine interface in FORTRAN language.
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